CENTRAL UNIVERSITY OF HARYANA

(Established under the Central Universities Act, 2009) (NAAC Accredited 'A' Grade)

Based upon CBCS, LOCF and NEP-2020 Curriculum and Syllabi

of M.Sc. Physics

2023-25

DEPARTMENT OF PHYSICS & ASTROPHYSICS SCHOOL OF BASIC SCIENCES

Approved by:Approval Status :Approval Date

BOS Approved 05-07-2023 School Board Approved 18-07-2023 **Academic Council**

1 | P a g e

Table of Contents

Sr. No.	Contents	Page No.
1100	VISION AND MISSION	3
1	BACKGROUND	
	i) NEP-2020 and LOCF an integrated Approach	4
	ii) About the subject	6
	iii) About the Programme (Nature, extent and aims)	6
	iv) Qualification Descriptors (possible career pathways)	0
		7
2	PROGRAMME OUTCOMES (POs)	8
3	PROGRAMME SPECIFIC OUTCOMES (PSOs)	9
4	POSTGRADUATE ATTRIBUTES	9
5	STRUCTURE OF MASTER'S COURSE	10
6	LEARNING OUTCOME INDEX	11
7	(Mapping of Courses with POs and PSOs) SEMESTER-WISE COURSES AND CREDIT	15
	DISTRIBUTION	15
8	COURSE-LEVEL LEARNING OUTCOMES	20
9	TEACHING-LEARNING PROCESS	135
10	IMPLEMENTATION OF BLENDED LEARNING	143
11	ASSESSMENT AND EVALUATION	143
12	KEYWORDS	144
13	REFERENCES	144
14	APPENDICES	145

VISION AND MISSION

i) Vision and Mission of the University

Vision

To develop enlightened citizenship of a knowledge society for peace and prosperity of individuals, nation and the world, through promotion of innovation, creative endeavours, and scholarly inquiry.

Mission

To serve as a beacon of change, through multi-disciplinary learning, for creation of knowledge community, by building a strong character and nurturing a value-based transparent work ethics, promoting creative and critical thinking for holistic development and self-sustenance for the people of India. The University seeks to achieve this objective by cultivating an environment of excellence in teaching, research and innovation in pure and applied areas of learning.

ii) Vision and Mission of the Department

Vision

To establish a platform for the dissemination and creation of knowledge through teaching and research in Physics and Astrophysics at various levels. To help create a scientific society which encourages logical thinking.

Mission

- To offer a state of art Academic Programs in Physics and interdisciplinary areas.
- To create intellectual property through innovations, quality research publications and patents
- To create state of art research laboratories which will facilitate the research of Central University of Haryana as well as other academic institutions.

BACKGROUND NEP-2020 and LOCF an integrated Approach

Considering the curricular reforms as instrumental for desired learning outcomes, all the academic departments of Central University of Haryana made a rigorous attempt to revise the curriculum of undergraduate and postgraduate programmes in alignment with National Education Policy-2020 and UGC Quality Mandate for Higher Education Institutions-2021. The process of revising the curriculum could be prompted with the adoption of "Comprehensive Roadmap for Implementation of NEP-2020" in 32nd meeting of the Academic Council of the University held on April 23, 2021. The Roadmap identified the key features of the Policy and elucidated the Action Plan with well-defined responsibilities and indicative timeline for major academic reforms.

The process of revamping the curriculum started with the series of webinars and discussions conducted by the University to orient the teachers about the key features of the Policy, enabling them to revise the curriculum in sync with the Policy. Proper orientation of the faculty about the vision and provisions of NEP-2020 made it easier for them to appreciate and incorporate the vital aspects of the Policy in the revised curriculum focused on 'creating holistic, thoughtful, creative and well-rounded individuals equipped with the key 21st century skills' for the 'development of an enlightened, sociallyconscious, knowledgeable, and skilled nation'.

With NEP-2020 in background, the revised curricula articulate the spirit of the policy by emphasising upon—integrated approach to learning; innovative pedagogies and assessment strategies; multidisciplinary and cross-disciplinary education; creative and critical thinking; ethical and Constitutional values through value-based courses; 21st century capabilities across the range of disciplines through life skills, entrepreneurial and professional skills; community and constructive public engagement; social, moral and environmental awareness; Organic Living and Global Citizenship Education (GCED); holistic, inquiry-based, discovery-based, discussion-based, and analysis-based learning; exposure to Indian knowledge system, cultural traditions and classical literature through relevant courses offering 'Knowledge of India'; fine blend of modern pedagogies with indigenous and traditional ways of learning; flexibility in course choices; student-centric participatory learning; imaginative and flexible curricular structures to enable creative combination of disciplines for study; offering multiple entry and exit points initially in undergraduate programmes; alignment of Vocational courses with the International Standard Classification of Occupations

. . . .

maintained by the International Labour Organization; breaking the silos of disciplines; integration of extra-curricular and curricular aspects; exploring internships with local industry, businesses, artists and crafts persons; closer collaborations between industry and higher education institutions for technical, vocational and science programmes; and formative assessment tools to be aligned with the learning outcomes, capabilities, and dispositions as specified for each course. In case of UG programmes in Engineering and Vocational Studies, it was decided that the departments shall incorporate pertinent NEP recommendations while complying with AICTE, NBA, NSQF, International Standard Classification of Occupations, Sector Skill Council and other relevant agencies/sources. The University has also developed consensus on adoption of Blended Learning with40% component of online teaching and 60% face to face classes for each programme.

The revised curricula of various programmes could be devised with concerted efforts of the faculty, Heads of the Departments and Deans of Schools of Study. The draft prepared by each department was discussed in series of discussion sessions conducted at Department, School and the University level. The leadership of the University has been a driving force behind the entire exercise of developing the uniform template and structure for the revised curriculum. The Vice Chancellor of the University conducted series of meetings with Heads and Deans to deliberate upon the vital parameters of the revised curriculum to formulate a uniform template featuring Background, Programme Outcomes, Programme Specific Outcomes, Postgraduate Attributes, Structure of Masters Course, Learning Outcome Index, Semester-wise Courses and Credit Distribution, Course-level Learning Outcomes, Teaching-Learning Process, Blended Learning, Assessment and Evaluation, Keywords, References and Appendices. The experts of various Boards of Studies and School Boards contributed to a large extent in giving the final shape to the revised curriculum of each programme.

To ensure the implementation of curricular reforms envisioned in NEP-2020, the University has decided to implement various provisions in a phased manner. Accordingly, the curriculum may be reviewed annually.

ii) About the Subject

Physics is the natural science that studies the matter, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines

5 | Page

and its main goal is to understand the behavior of universe and its characteristics.

Physics uses the scientific method to help uncover the basic principles governing light and matter, and to discover the implications of those laws. It assumes that there are rules by which the universe functions, and that those laws can be at least partially understood by humans. It is also commonly believed that those laws could be used to predict everything about the universe's future if complete information was available about the present state of all light and matter.

On inclusion of Astronomy, the Physics became one of the oldest academic disciplines. Physics intersects with many interdisciplinary areas of research. New ideas in Physics often explain the fundamental mechanisms studied by other branches of science and suggest new avenues of research in academic disciplines such mathematics etc. Advancement in Physics often leads to new technologies.

iii) About the Programme (Nature, extent and aims)

M.Sc. Physics is a two year regular programme. There four semesters in this programme. Each semester is of sixteen weeks duration. Teaching and learning process of M.Sc. Physics involves theory and practical classes along with seminar presentation and research project work.

The curriculum will be taught through formal lectures with the aid of power-point presentations, audio and video tools and other teaching aids can be used as and when required. Emphasis will be given to laboratorywork and visit to National laboratories to give hands on experience to students. Students will be encourage to do semester long project in their own institutes as well as in reputed institutes of National level. Aims of the Programme are as follows

- Understand the underlying Physics in respective specializations, and, be able to teach and guide successfully
- > Introduce advanced ideas and techniques that are applicable in respective fields.
- Provide the students with a broad spectrum of Physics Courses
- Emphasize the role of Physics in other disciplines such as (Chemical Sciences, Mathematical Sciences, Life Sciences and their applied areas)
- > Develop the ability of the students to observe, perform, analyse and report an experiment

- > Develop the ability of the students to deal with physical models and formulas mathematically
- > Equip the students with different practical, intellectual and transferable skills.
- Strengthen the student knowledge of Physics and its applications in real world.
- Provide the student with mathematical and computational tools and models to be used in solving professional problems
- Improve the student's inter disciplinary skills.
- To develop human resources with a solid foundation in theoretical and experimental aspects of respective specializations as a preparation for career in academia and industry.

iv) Qualification Descriptors (possible career pathways)

Upon successful completion of the course, the students receive M.Sc. Degree in the Physics. The postgraduate of Department of Physics and Astrophysics are expected to opt different paths seeking sphere of knowledge and domain of professional work that can fulfill their dreams. Students will be able to demonstrate their knowledge in advance branches of Physics. This will establish a platform over which students can pursue higher studies. The possible career paths for postgraduate in M.Sc. Physics are

- 1. Teaching Assignments
- 2. Scientific Assignments
- 3. Instruments development
- 4. Research and Development in Industries
- 5. Simulation Techniques Development in Science
- 6. Role in Renewable Energy Resources
- 7. University/Institute Administrative Assignments
- 8. Technician in Lasers, Accelerators, Detectors and Electronics
- 9. Astronomer
- 10. Medical Device Designer
- 11. Radiologist

2. PROGRAMME OUTCOMES (POs)

Students enrolled in the Master's Programmes offered by the Departments under the School of Basic Sciences will have the opportunity to learn and master the following components in addition to attain important essential skills and abilities:

PO-No.	Component	Outcomes
PO-1	Basic Knowledge	Capable of delivering basic disciplinary knowledge gained
		during the programme.
PO-2	In-depth Knowledge	Capable of describing advanced knowledge gained during
		the programme.
PO-3	Critical thinking and	Capable of analyzing the results critically and applying
	Problem Solving	acquired knowledge to solve the problems.
	abilities	
PO-4	Creativity and	Capable to identify, formulate, investigate and analyze the
	innovation	scientific problems and innovatively to design and create
		products and solutions to real life problems.
PO-5	Research aptitude and	Ability to develop a research aptitude and apply knowledge
	global competency	to find the solution of burning research problems in the
		concerned and associated fields at global
		level.
PO-6	Holistic and	Ability to gain knowledge with the holistic and
	multidisciplinary	multidisciplinary approach across the fields.
	education	
PO-7	Skills enhancement	Learn specific sets of disciplinary or multidisciplinary
		skills and advanced techniques and apply them for
		betterment of mankind.
PO-8	Leadership and	Ability to learn and work in a groups and capable of
	Teamwork abilities	leading a team even.
PO-9	Environmental and	Learn important aspects associated with environmental and
	human health	human health. Ability to develop eco-friendly technologies.
	awareness	
PO-10	Ethical thinking and	Inculcate the professional and ethical attitude and ability to
	Social awareness	relate with social problems.
PO-11	lifelong learning	Ability to learn lifelong learning skills which are important
	skills and	to provide better opportunities and improve quality of life.
	Entrepreneurship	Capable to establish independent startup/innovation center
		etc.

3. PROGRAMME SPECIFIC OUTCOMES (PSOs)

The post graduates shall be able to realise the following specific outcomes by the end of program studies:

Number	Programme Specific Outcomes
PSO-1	Identify, formulate, and solve Physics problems
PSO-2	Design and conduct experiments, as well as to analyse and interpret data
PSO-3	Apply knowledge of Physics in a different stream of science and to communicate effectively.
PSO-4	Ability to use the techniques, skills, and modern physical tools in real world application.
PSO-5	Engage in life-long learning and will have recognition.

4. Postgraduate Attributes

No.	P.G. Attributes
PGA-1	have the ability to demonstrate advanced independent critical enquiry, analysis and reflection
PGA-2	In-depth knowledge of their specialist discipline(s)
PGA-3	be critical and creative thinkers, with an aptitude for continued self-directed learning
PGA-4	be able to examine critically, synthesize and evaluate knowledge across a broad range of disciplines.
PGA-5	Reach a high level of achievement in writing, research or project activities, problem solving and communication.
PGA-6	have a set of flexible and transferable skills for different types of employment
PGA-7	have a strong sense of intellectual integrity and ethics of scholarship.
PGA-8	be able to initiate and implement constructive change in their communities, including professions and workplaces.

5. STRUCTURE OF MASTER'S COURSE

Total Credits of M.Sc. Physics : 96

Types of Courses	Nature	Total Credits	%
Core Courses(CC)	Compulsory	60	62.5
Elective Courses (EC)	Discipline Centric Elective Courses	0	0
	Discipline Specialized Elective Courses	16	16.6
	Generic Elective Courses	8	8.3
Skilled-based courses/ Self-study based courses	Skill Enhancement Courses	12	12.5

List of Courses (*, **, ***, ****)

6. LEARNING OUTCOME INDEX

6.1 A Mapping of Core Courses with PSOs

POs ⇒	PSO1	PSO2	PSO3	PSO4	PSO5
~					
Course					
No. $ ilde{V}$					
1					\checkmark
2					\checkmark
3					
5	V		V		\checkmark
4	\checkmark	\checkmark			
5	\checkmark	\checkmark			\checkmark
6					\checkmark
7					
	, v		, v		v
8					
9	\checkmark	\checkmark	\checkmark		
10	√			ν	
10	N	N		N	
11					
	,				
12	\checkmark		\checkmark		
13		\checkmark			\checkmark

14				

6.1B Mapping of Discipline Centric Courses with PSOs

POs ⇒	PSO1	PSO2	PSO3	PSO4	PSO5
Course					
No. ↓					
1	√				√
2	√	√		√	√
3		√		√	\checkmark
4		√		√	\checkmark
5	ν		√		√
6		√	√	√	
7		ν			
8			√		
9	\checkmark				
10	\checkmark				\checkmark
11	\checkmark				
12	\checkmark				\checkmark
13			V		
14					
15	\checkmark				
16					\checkmark
17	\checkmark				\checkmark
18					\checkmark
19					\checkmark
20					
21					
22					
23	\checkmark				
24					

12 | Page

25			
26			
27	\checkmark		

7. SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION

Note: This scheme supersedes the earlier available schemes before this date.

SEMESTER-I (26-Credits)

Sr. No.	Course No	Course Code	Course Title	L	Т	Р	Hr s/ W ee k	Total Cred its
Core	e Courses							
1	1	SBS PHY 01 101 CC 3104	Mathematical Methods in Physics – I	3	1	0	4	4
2	2	SBS PHY 01 102 CC 3104	Classical Mechanics	3	1	0	4	4
3	3	SBS PHY 01 103 CC 3104	Quantum Mechanics – I	3	1	0	4	4
4	4	SBS PHY 01 104 CC 3104	Semiconductor Devices	3	1	0	4	4
5	5	SBS PHY 01 105 CC 00126	Laboratory-I	0	0	12	12	6

Generic Elective Courses (for students of other Departments)

6	1	SBS PHY 01 101 GEC 2124	Numerical Methods and	2	1	2	7	4
			Programming					
7	2	SBS PHY 01 102 GEC 3104	Modern Optics	3	1	0	4	4
8	3	SBS PHY 01 103 GEC 3104	Physics of Digital	3	1	0	4	4
			Photography					
9	4	SBS PHY 01 104 GEC 2002	Renewable Energy Resources	4	0	0	4	4

SEMESTER-II (26-Credits)

Sr.	Course	Course Code	Course Title	L	Т	Р	Hr	Tota
No.	No						s/	Cred
							W	its
							ee	
							k	
Core	e Courses							
1	6	SBS PHY 01 201 CC 3104	Statistical Mechanics	3	1	0	4	4
2	7	SBS PHY 01 202 CC 3104	Classical Electrodynamics	3	1	0	4	4
3	8	SBS PHY 01 203 CC 3104	Mathematical Methods in Physics- II	3	1	0	4	4
4	9	SBS PHY 01 204 CC 00126	Laboratory II	0	0	12	12	6
Disc	ipline Cent	ric Elective Courses						
5	1	SBS PHY 01 201 DCEC 3104	Quantum Mechanics – II	3	1	0	4	4
6	2	SBS PHY 01 202 DCEC 3104	Introduction to Astronomy and Astrophysics	3	1	0	4	4
7	3	SBS PHY 01 203 DCEC 3104	Fundamentals of Solar Energy	3	1	0	4	4
8	4	SBS PHY 01 204 DCEC 3104	Accelerator Physics	3	1	0	4	4
9	5	SBS PHY 01 205 DCEC 3104	Radiation Physics	3	1	0	4	4
Disc	ipline Cent	tric Skill based courses	- -	1				
10	6	SBS PHY 01 206 DCEC 3024	Computational Physics	3	0	2	5	4
11	7	SBS PHY 01 207 DCEC 3104	Analog Electronics	3	1	0	4	4
Gen	eric Electiv	e Courses (for students of other De	0		I	1		
12	5	SRS PHV 01 201 CEC 3104	Environmontal Physics	2	1	0	1	1

12	5	SBS PHY 01 201 GEC 3104	Environmental Physics	3	1	0	4	4	
13	6	SBS PHY 01 202 GEC 2044	Introduction to Latex and Scilab	2	0	4	4	4	
								l	l

SEMESTER-III (28-Credits)

Sr. No.	Course No	Course Code	Course Title	L	Т	Р	H rs / W ee k	Total Cred its
Core	e Courses							
1	10	SBS PHY 01 301 CC 3104	Atomic, Molecular Physics and Lasers	3	1	0	4	4
2	11	SBS PHY 01 302 CC 3104	Nuclear Physics	3	1	0	4	4
3	12	SBS PHY 01 303 CC 3104	Solid State Physics	3	1	0	4	4
4	13	SBS PHY 01 304 CC 00126	Laboratory-III	0	0	8	8	4
5	14	SBS PHY 01 305 CC 0202	Seminar Presentation	0	2	0	2	2
6	15	SBS PHY 01 306 CC 2002	Research and Publication Ethics	2	0	0	2	2
Disc	ipline Cent	ric Elective Courses					•	
5	6	SBS PHY 01 301 DCEC 3104	Physics of Electronic Materials and Devices	3	1	0	4	4
6	7	SBS PHY 01 302 DCEC 3104	Nuclear Reactor Physics	3	1	0	4	4
7	8	SBS PHY 01 303 DCEC 3104	Plasma Physics and Fusion Reactor	3	1	0	4	4
8	9	SBS PHY 01 304 DCEC 3104	Physics of Nanomaterials	3	1	0	4	4
9	10	SBS PHY 01 305 DCEC 3104	General Theory of Relativity	3	1	0	4	4
10	11	SBS PHY 01 306 DCEC 3104	Astrophysics of Stars	3	1	0	4	4
	<u>*</u>	ric Skill based courses					•	
11	12	SBS PHY 01 307 DCEC 3024	Characterization Techniques for Materials	3	0	2	5	4
12	13	SBS PHY 01 308 DCEC 3104	Digital Electronics and Microprocessor	3	1	0	4	4
13	14	SBS PHY 01 309 DCEC 3104	Programming with Python	3	1	0	4	4

SEMESTER-IV (16-Credits)

Sr. No.	Course No	Course Code	Course Title	L	T	Р	Hr s/ W ee k	Total Cred its
Maj	or Researc	h Project						
1	1	SBS PHY 01 401 PROJ 000	Dissertation	0	0	0	16	16
Disc	ipline Cent	ric Elective Courses		1				1
2	15	SBS PHY 01 401 DCEC 3104	Advanced Nuclear Physics	3	1	0	4	4
3	16	SBS PHY 01 402 DCEC 3104	Particle Physics	3	1	0	4	4
4	17	SBS PHY 01 403 DCEC 3104	Cosmology	3	1	0	4	4
5	28	SBS PHY 01 404 DCEC 3104	Ferroelectricity and Magnetism	3	1	0	4	4
6	19	SBS PHY 01 405 DCEC 3104	Advanced Carbon Materials	3	1	0	4	4
Disc	ipline Cent	ric Skill based courses						
7	20	SBS PHY 01 406 DCEC 3104	Experimental Techniques in Nuclear and Particle Physics	3	1	0	4	4
8	21	SBS PHY 01 407 DCEC 3104	Astronomy Laboratory	3	1	0	4	4
9	22	SBS PHY 01 408 DCEC 3104	Vacuum Science and Thin Film Technology	3	1	0	4	4
10	23	SBS PHY 01 409 DCEC 3104	Minor Project	3	1	0	4	4
11	24	SBS PHY 01 410 DCEC 3104	Introduction to Hydrogen Energy Systems	3	1	0	4	4

Note:

- This GEC* courses offered by the Department can only be taken by the students of other Departments. The students of the Physics Department will take GEC from other Departments.
- The Department may offer more than one discipline centric elective courses (DCECs) depending on specialization and strength of faculty members, and the number of students have to opt one of them for semester II. If class strength is less than 10, then that particular subject will not be offered.
- In semester III, students are required to opt two courses out of the listed DCEC (courses) and Discipline Centric Skill based courses. However, a course will be offered subject to the available specialization and strength of the faculty.
- In semester IV, the students have to opt four out of DCEC (courses) and Discipline Centric Skill based courses from various options offered by the Department depending on the specialization and strength of the faculty.

OR

- Student may opt for full semester long dissertation work on the campus or outside the campus in some Laboratories/Institutes/Universities of National Importance.
- ➢ For carrying out the dissertation work outside the campus, student will have to produce an invitation/acceptance letter from external supervisor by the end of Semester III.
- Student may complete the dissertation project under the guidance of a supervisor on CUH campus.

17 | Page

- Student who will pursue the project outside CUH will have one internal supervisor and one external supervisor.
- Internal supervisor will periodically interact with student and external supervisor. He/She will be responsible for internal assessment of the candidate from time to time.
- Student will be allowed to work with external supervisor at other outside institutions only after completing all the documentation process at CUH. Students have to follow the timeline strictly issued by Department from time to time.
- > Department will have no financial obligation if student carries out the dissertation work outside CUH.

8. COURSE-LEVEL LEARNING OUTCOMES

Course Structure

Scheme Version: 2022-24	Name of the subject: Mathematical Methods in	L	Т	Р	С	Semeste	er:	Contact Hours per Week: 4	
	Physics-I	3	1	0	4	(1 st Year) Total			
Subject	Applicable to	Evaluation	CIE	30 Marka		ination D	Durat	ion: 3	
Code: SBS PHY 01 101	Programs: M.Sc. Physics	(Total Marks:	CIE	Marks 70	Hours		f Cou	rse: B.Sc.	
CC 3104	Wilde. Thysics	100)	TEE	Marks	TTELE	quisite of	Cou	ISC. D.SC.	
Course	This course has	been develo	oped to	introduc	ce stud	ents to s	some	topics of	
Description	mathematical Ph	•		•		-	-	-	
	course. It include			U	-	•			
	-	_			culus along with an introduction				
	to computational techniques and statistical measures used in physics Course.					ourse.			
Course		earning about r		0	+				
Objectives		nderstanding b etting to know				nlev algel	hra		
		nderstanding N	U			· ·	UIa		
	After successful					-	e able	e to do the	
	following :	-							
	СО101С.1 : То	use matrices t	for solv	ing linea	r algebi	aic equat	tions	and to use	
Course	group theory for	understanding	of cryst	allograph	ıy.				
Outcomes	СО101С.2 : То	use tensor tran	sformat	tion and r	elated a	lgebra in	physi	ics.	
	CO101C.3 : To s	solve real defin	ite inte	grals in th	neoretic	al Physics	5.		
	СО101С.4 : То	find roots of a	given j	polynomi	al and u	inderstand	d the	properties	
	of a statistical dis	stribution of po	oint part	icles.					
	1	COURSE	SYLLA	BUS					
Unit No.		Content of	Each U	Jnit]		rs of Each Unit	
	Matrices and G								
1	Linear vector spa							15	
19 Page	eigenvectors and	eigenvalues, n	natrix d	iagonaliz	ation, sj	pecial			

Mathematical Methods in Physics I

	matrices. Symmetries and groups, multiplication table and representations, permutation group, translation and rotation groups, O(N) and U(N) groups.	
2	Tensors Analysis : Coordinate transformations, scalars, contravariant and covariant vectors, mixed and covariant tensor of second rank, addition, subtraction and contraction of tensors, quotient rule. Christoffel symbols, transformation of Christoffel symbols, Covariant differentiation, Ricci's theorem, divergence, Curl and Laplacian tensor form, Stress and strain tensors, Hook's law in tensor form.	15
	Complex Variables :	
3	Functions of complex variable, Limits and continuity, differentiation, Analytical functions, Cauchy-Riemannn conditions, Cauchy Integral theorem, Cauchy integral formula, Derivatives of analytical functions, Liouville's theorem. Power series Taylor's theorem, Laurent's theorem. Calculus of residues–poles, essential singularities and branch points, residue theorem, Jordan's lemma, singularities on contours of integration, evaluation of definite integrals.	15
4	Computational Techniques and Probability Theory: Root of functions, interpolation, extrapolation, Integration by trapezoid and Simpson's rule, solution of first order differential equation : using Runge-Kutta method and Finite difference methods. , Preliminary Concepts : mean values, standard deviation, various moments; Random walkproblem, Binomial distribution, Poisson distribution, Gaussian distributions, Lorentz distribution, Central Limit Theorem.	15
	TEXT BOOKS	
Physi 2. Merle of Ind 3. George Acade 4. Inc., 1 5. E. Kre	ck W. Byron and Robert W. Fuller , Mathematics of Classical cs, Dover Publications, Mineola, New York, Vol 1&2, 1970. C. Potter and Jack Goldberg , Mathematical Methods, S.CHA lia), New Delhi, 2 nd Edition, 1987. e Arfken and Hans J Weber , Mathematical Methods for P emic Press. Cambridge, Massachusetts, 7 th Edition 2012 L. A. Pipe , Applied Mathematics for Engineers and Physicists, Mineola, New York 3rd Edition 2014. eyszig , Advanced Engineering Mathematics, John Wiley & Sor 7 (United States), 10 th Edition, 2015.	ND (Prentice Hall hysicists, Elsevier Dover Publication

20 | Page

- 6. **K. F. Riley, M.P. Hobson, and S. J. Bence,** Mathematical methods for Physicists and Engineers, S. CHAND (Cambridge University Press), New Delhi, 3rd edition, 2018.
- 7. **V. BALAKRISHNAN**, Mathematical Physics with Applications, Problems and Solutions, Ane Books, New Delhi, 1st Edition, 2018

Classical Mechanics

Scheme	Name of the	L	Т	Р	С	Semester:	Contact	
Version:	subject:						hours per	
							week: 3+1	
	Classical							
2022-24	Mechanics						Total	
2022 21		3	1	0	0	4	Ι	Hours:
		5	1	Ŭ		(1 st \$7)	60=45+15	
						(1 st Year)		
Subject Code:	Applicable to	Evaluatio		30	Exami	nation Dura	tion:3 hours	
SBS PHY 01	Programs:M.Sc.	n	CIE	Marks				
102 CC 3104	Physics	(T-4-1						
		(Total Marks:		70	Prerec	uisite of Co	urse: None	
		100	TEE	Marks				
		100)						
Course	This course aims a	t providing k	nowledge	of Classic	al Mech	anics to the s	students so that	
Description	they are able to u	inderstand the	Lagran	gian & Ha	miltonian mechanics of systems of			
	particles interactin	g with variou	s forces a	and also the	eir applio	cations in var	rious branches	
	of Physics.							
		. 1.1.0	1 . 1	6 1 . 1	1 .			
	• Io und	erstand the fund	damentals	of classical	mechanic	2S		
Course	• To get	familiar with v	arious clas	ssical mecha	inical pro	blems related t	to Lagrangian &	
Objectives		onian formulati						
			about ap	plications of	classical	mechanics in	various science	
	branch	es						
	After completion of	of this course,	students	would be a	ble to:			
	CO102C.1. Und			•	-		embert's	
Carrent	principle, Lagran	0		-				
Course			onian for	mulation, F	Iamilton's Equations of Motion and			
Outcomes	Principle of least a	ction.						
	CO102C.3. Learn	Canonical Tra	ansforma	tions & Ha	milton-Ja	acobi theory.		
	CO102C.4. Learn	about Rigid b	ody dyna	mics inclu	ling problems.			
	CO102C.5. Under	stand the two	body cen	tral force p	roblem a	and its related	l aspects.	
·								

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of EachUhit
1	Lagrangian Formulation and Hamilto.s Principles:Mechanics of one and many particle systems, Virtual work, Constraints of motion, generalized coordinates, D'Alembert's Principle and Euler-Lagrange Equations of motion, velocity dependent potentials, dissipation function, simple applications of Lagrangian formulation.Calculus of Variations, Hamilton's Principle, Derivation of Lagrange's 	15
2	Hamilton's Equations of Motion and Small Oscillations: Generalized momentum, Legendre transformation and the Hamilton's Equations of Motion, simple applications of Hamiltonian formulation, cyclic coordinates, Routh's procedure, Hamiltonian Formulation of Relativistic Mechanics, Derivation of Hamilton's canonical equation from Hamilton's variational principle. The principle of least action. Stable and unstable equilibria; Theory of small oscillations in Lagrangian formulation, normal coordinates and its applications, Free vibrations of linear triatomic oscillator.	15
3	Canonical Transformation and Hamilton-Jacobi Theory:Canonical transformation and its examples, integral invariant of Poincare, Lagrange's and Poisson brackets as canonical invariants, equation of motion in Poisson bracket formulation, Angular momentum, Infinitesimal contact transformation and generators of symmetry, Liouville's theorem. Hamilton- Jacobi equation for Principal and characteristic function, Harmonic Oscillator Problem, Action angle variable: adiabatic invariance of action variable.	15
4	Two-body Central Force problem and Rigid Body Motion:Two body central force problem: Reduction to equivalent one body problem, equation of motion and first integrals, Equivalent 1D problem, classification of orbits, Differential equation for the orbit, Kepler's problem, Scattering cross section, Rutherford's Formula.Orthogonal transformation, Euler equations, Eulerian angles ad Euler's Theorem, Infinitesimal rotation, Rate of change of a vector, Coriolis force, Angular Momentum and Kinetic energy of a rigid body, moment of Inertia, Eigenvalues of the inertia tensor.	15

TUTORIALS : Relevant problems given at the end of each chapter in different books.

TEXT BOOKS

- **1. A. Sommerfeld,** Mechanics, Academic Press, United States, 1st Edition, 1952.
- **2. I. Percival and D. Richards**, Introduction to Dynamics, Cambridge University Press, 1st Edition1982.
- 3. Ronald L. Greene, Classical Mechanics with Maple, Springer, Germany, 2nd Edition, 2000.
- **4. Herbert Goldstein, Charles Poole, John Safko,** Classical Mechanics, Pearson Education, UK, 3rd Edition, 2011.
- **5.** L.D. Landau and E.M. Lifshitz, Mechanics, Butterworth-Heinemann, UK, 2nd Edition, 2012.
- **6.** N.C. Rana and P.S. Joag, Classical Mechanics, Tata McGraw Hill, New Delhi, 1st Edition, 2015.

QUANTUM MECHANICS - I

Scheme Version:	Name of the subject: Quantum	L	Т	Р	C	Semester:	Contact hours per week: 3+1
2022-24	Mechanics – I	3	1	0	4	I (1 st Year)	Total Hours: 60=45+15
Subject Code:	Applicable to	Evaluation		30	Exami	nation Dura	tion: 3 hours
SBS PHY 01	Programs:	(Total	CIE	Marks			
103 CC 3104	M.Sc. Physics	Marks:		70	Prerec	uisite of Co	urse:
		100)	TEE	Marks	-	ation Level Q	
Course Description	This course is des comprehensive and physics, nuclear ph	d rich applicabi	lity in co	ondensed n	natter phy		
Course Objectives	• To make igenvariant we	alue, Schrödinge Il, angular mom are the students	various qu r equatio enta etc.	uantum mec n, free partie	hanical pr cle, harmo	oblems related	l to vector space, potential barrier various science

	After competition of this course, students will be able to					
Course Outcomes	CO103C.1. explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and commutators which are very helpful in solving the various quantum mechanics problems					
Outcomes	CO103C.2. understand the uncertainty relation between two arbitrar	y operators				
	CO103C.3. distinguish the actual meaning of time independent Schrodinger's equations	and time dependent				
	CO103C.4. illustrate Ehrenfest theorem, Poisson Brackets, wave	e packets and wave				
	functions position and momentum space					
	CO103C.5. analyze the energy eigenvalues and wave functions of infinite and finite square wells, free particle, and hydrogen atom	harmonic oscillator,				
	CO103C.6. determine the transmission and reflection coefficients and potential step, and delta function well	of potential barrier				
	CO103C.7. recognize the importance of angular momentum and quantum mechanics	its applications in				
	CO103C.8. explain the physics behind the addition of angular mom	ienta				
	COURSE SYLLABUS					
Unit No.	Content of Each Unit	Hours of Each Unit				
	Mathematical Tools of Quantum Mechanics:					
1	Vector Spaces, Linear Independence, Bases, Dimensionality, Linear Transformations, Similarity Transformations, Eigen Values and Eigen Vectors, Inner Product, Orthogonality and Completeness, Hilbert Space, Hermitian and Unitary Operators, Orthonormality, Completeness and Closure, Dirac's Bra and Ket Notation, Matrix Representation and Change of Basis, Operators and Observables, Commutation Relations, Uncertainty principle for two arbitrary Operators.	15				

		1
	Quantum Dynamics: Time Evolution Operator, Stationary States, Schrodinger Equation, The Schrodinger versus the Heisenberg Picture, The Infinite Square Well and the Simple Harmonic Oscillator: Energy Eigenvalues and Energy Eigenstates, Connecting Quantum to Classical Mechanics: The Ehrenfest	15
	Theorem; Poisson Brackets and Commutators, Wave Packets, Wave Functions in Position and Momentum Space.	
	Quantum Mechanics in One and Three Dimensions:	
	Properties of One Dimensional Motion: Bound States andScattering States, The Free Particle, The Potential Step, The Potential Barrier and Well, The Finite Square Well, The Delta- Function Well, Three Dimension Problems: Hydrogen Atom.	15
	Angular Momenta and Approximate Analysis:	
	Orbital angular momentum, General Formalism of Angular Momentum, Eigenfunctions and Eigenvalues of Orbital Angular Momentum, Addition of Angular Momenta, Spin Angular Momentum: Stern-Gerlach Experiment; Pauli Matrices and Spinors, Clebsch-Gordan Coefficients.	15
	TEXT BOOKS	
1.	L. D. Landau and E.M. Lifshitz , Quantum Mechanics, Butterworth He Netherlands, 3 rd Edition, 1981.	einemann, The
2.	P. A. M. Dirac , The Principles of Quantum Mechanics, Oxford University P 1988.	ress, UK, 4 th Edition,
3.	R. Shankar, Principles of Quantum Mechanics, Springer, Germany, 2 nd Edit	
4.	N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley, USA, 2 nd	
5.	J. J. Sakurai, Modern Quantum Mechanics, Pearson, India, 2 nd Edition, 2013	
6.	L. I. Schiff, Quantum Mechanics, McGraw Hill Education, USA, 4 th Edition	
7.	D. J. Griffiths , Introduction to Quantum Mechanics, Cambridge University Edition, 2018.	Press, UK, 3 rd
8.	C. Cohen-Tannoudji, B. Diu, and F. Laloe , Quantum Mechanics, Volum Tools, and Applications, Wiley, USA, 2 nd Edition, 2019.	e 1: Basic Concepts,

Semiconductor Devices

Scheme	Name of the	L	Т	Р	С	Semester:	Contact		
Version:	subject:						hours per		
	Construction de stars						week: 3+1		
	Semiconductor Devices					-			
2022-24	Devices						Total Hours:		
		3	1	0	4	Ι	60=45+15		
						(101	00=45+15		
						(1 st Year)			
Subject Code:	Applicable to	Evaluation		30	Exami	nation Dura	tion: 3 hours		
SBS PHY 01	Programs:			Marks					
104 CC 3104	M.Sc. Physics	(Total	CIE						
		Marks:		70	Prerec	misite of Co	urse None		
		100)		Marks	Prerequisite of Course: None				
			TEE						
Course	The chiective of t	he course on (Comicon	duatan Dar	evices is to introduce semiconductor				
Description	physics, physical p						semiconductor		
Description	physics, physical p		ices and	then basic	applica	.10115.			
Course	An unders	tanding of basi	c semico	onductor de	vice phy	vsics			
Objective	. 1		1	C D ² 1 1					
	• An unders	tanding of the	applicati	on of Field	-Effect	ransistors.			
	• An unders	tanding of the a	applicati	on of Bipol	lar Junct	ion Transisto	rs.		
Course	On completion of	the course, stuc	lent wou	ld be able:					
Outcomes	CO104C.1. To ur	derstand the h	asic pro	perties of	semicon	ductors inclu	iding the band		
	gap, charge carrier		-	-			-		
				-		-			
	CO104C.2. To un		to find th	ne Fermi ei	nergy lev	vel and carrie	er density in n-		
	type and p-type set	miconductors.							
	CO104C.3. To ur	derstand basic	propert	ies of PN	iunction	and Metal-S	Semiconductor		
	junction.		rr-1						
	CO104C.4. To un		•	0	• •		IS		
	semiconducting de	vices like recti	tiers, cli	ppers, LEE), Solar (cells.			
	CO104C.5. To un	derstand the wo	orking, d	lesign, and	applicati	ons of BJTs	and FETs.		
	СО104С.6. То и	inderstand the	workin	g, design	and ap	plications of	Operational		

	Amplifier	
TT 1/ NT	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Semiconductors: Energy Band and Charge Carriers: Energy bands in semiconductors, Types of semiconductors: Intrinsic and extrinsic materials. Carrier concentration: Fermi Level, Electron and hole concentration in equilibrium, Temperature dependence of carrier concentration, Compensation and charge neutrality. Conductivity and mobility: Effect of temperature, Doping and high electric field, Hall Effect.	15
2	Junctions: p-n junction and contact potential, Fermi levels, Space charge, Reverse and Forward bias, Zener and Avalanche breakdown. Capacitance of p-n junction, Diode Applications: Load-Line Analysis, Series Diode Configurations, Parallel and Series-Parallel Configurations (AND/OR Gates), Half-Wave Rectification, Full- Wave Rectification, Clippers, Clampers. Network with a DC and AC Source, LED, Solar cell and photodetectors, Metal-Semiconductor contact: Rectifying contact and Ohmic contact.	15
3	 Bipolar Junction Transistors (BJT): Fundamentals of BJT, BJT Operation: Common-Base Configuration, Common-Emitter Configuration, Common-CollectorConfiguration, Limits of Operation, Minority carrier distribution, BJT DC Biasing: Operating Point, Fixed-Bias Configuration, Emitter-Bias Configuration, Voltage-Divider Bias Configuration, Collector Feedback Configuration, Emitter-Follower Configuration, Field Effect Transistors: JEFT: Construction and Characteristics of JFETS, Transfer Characteristics, MOSFET: Depletion-Type MOSFET, Enhancement-Type MOSFET, Transfer Characteristics. 	15
4	Operational Amplifiers: Differential amplifier (DA)- Basic circuit of differential amplifier Operation of differential amplifier: Common-mode rejection ratio	

		(CMRR), DC analysis of differential, Applications of OP-amp:						
		Inverting amplifier-Input and impedance of inverting amplifier,						
		Noninverting amplifier-Voltage follower, Effect of negative						
		feedback on OP-amp in feedback circuits, Summing amplifiers-						
		Applications of summing amp, OP-amp as integrators and						
		differentiators.						
-		TEVT DOOKS						
		TEXT BOOKS						
	1.	J.J. Cathey, Schaum's Outline of Electronic Devices and Circuits, McGraw Hill, New York, 2nd Edition						
		2002.						
	2.	B. Streetman and S. Banerjee, Solid State Electronics, Prentice Hall India, New Delhi, 6th Edition, 2006.						
	3.	Millman and Halkias, Integrated Electronics, McGraw Hill, New York, 2nd Edition 2009.						
	4.	4. A.P. Malvino, Electronic Principles, McGraw, New Delhi, New York 7th, Edition, 2009.						
	5.	5. J.H. Moore, C.C. Davis and M.A. Coplan, Building Scientific Apparatus, Addison Wesley, United						
		States, 4th Edition 2009.						
	6.	R.L. Boylestad and L. Nashelsky, Electronics Devices and Circuit Theory, Prentice Hall of India, New						
		Delhi, 11th Edition, 2013.						
	7.	P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, 3rd Edition, 2015.						

LABORATORY I

Scheme	Name of the	L	Т	Р	С	Semester:	Contact	
Version:	subject: Laboratory I						Hours per Week: 12	
2022-24		0	0	12	6	I (1 st Year)	Total Hours: 180	
Subject Code:	Applicable to	Evaluatio	30	Examin	Examination Duration: 3 hours			
SBS PHY 01	Programs:	n	CIE	Marks				
105 CC 00126	M.Sc. Physics	(Total	CIE					
		Marks:		70	Prereq	uisite of Cours	e: None	
		100)	TEE	Marks				
Course Description Course	 The objective of the lab 1 is to train students to perform various experiments associated with Electronics, Quantum physics, Waves mechanics and Spectroscopy. Students assigned the general laboratory work will perform at least ten (10) experiments of the above mentioned list of Physics experiments and further 8 experiments from the C programming section Experiments of equal standard may be added. Workshop soldering and designing of experiments should be included To give hands on experience to students for generating magnetic field and measurement of various parameters. 							
 To teach how temperature controlled oven works To take measurements of current and voltage using equipment 						/arious		
	After competitio	n of this cours	se, the stu	dents will	be able to	0		
Course Outcomes	CO105C.1. learn various Physics aspects by performing the experiments related to electronic devices, atomic and molecular physics, light wave, sound waves etc.							
	CO105C.2. Learn Error analysis							
	CO105C.3. Use excel for plotting graphs							

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	1.Hall Effect2.Four Probe Method to find band gap of semiconductor3.Electron Spin Resonance4.Frank-Hertz experiment5.PN Junction characteristics6.Solar cell characteristics7.Velocity of ultrasonic wave in liquids8.Characteristics of MOSFET9.Diode as voltage regulator10.Ionization potential of mercury11.Planck's constant using LED12.Law of Malus13.Zener diode characteristics	150
2	 Introduction to C Programming: Write a Program to calculate and display the volume of a CUBE having its height, width and depth. Write a C program to perform addition, subtraction, division and multiplication of two numbers Write a program to input two numbers and display the maximum number. Write a program to find the largest and smallest among three entered numbers and also display whether the identified largest/smallest number is even or odd. Write a program to check whether the entered year is leap year or not (a year is leap if it is divisible by 4 and divisible by 100 or 400.) Write a program to find the factorial of a number. Write a program to find GCD (greatest common divisor or HCF) and LCM (least common multiple) of two numbers 	30

TEXT BOOKS

- 1. **Worsnop and Flint,** Experimental Physics, Little hampton Book Services Ltd, United Kingdom, 9th Edition, 1951.
- 2. **A. C. Melissinos, J. Napolitano,** Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003.
- 3. Lab manuals, prepared by faculty of the Department of Physics, 2018.

Numerical Methods and Programming

Scheme Version: 2022-24	Name of the subject: Numerical Methods and	L	Τ	Р	С	Semes		Contact Hours per Week: 4
	Programming	2	1	2	4			Total Hours: 60=45+15
Subject Code: SBS PHY 01 101	Applicable to Programs: M.Sc.	Evaluation (Total30 CIEExamination hoursMarks: 100)s						tion: 3
GEC 2124			TEE	70 Mark s		Prerequisite of Course: B.Sc. With Mathematics.		
Course	This course teac	hes the studen	ts to so	lve basi	c probl	ems of	mathe	ematics and
Description	sciences with the help of an approximation and a computer.							
Course Objectives	 To make the student 1) Understand basics of a Programming Language 2) Aware of various Numerical methods. 3) Able to create hypothetical data sets for Physical Systems. 4) familiar with random sampling of large data sets. 							
Course Outcomes	 Students will be able to learn : CO101G.1 : to write a computer program in C. CO101G.2 : the solutions of linear and non-linear equations along with solutions of simultaneous linear equations. 							
	CO101G.3 : Numerical differentiation and integration.CO101G.4 : Monte Carlo methods and its application to problems of physical world.						physical	
	1	COURSE S						
Unit No.	Content of Each UnitHours of EachUnit							
1	C/C++: Flow charts, Algorithms, Input and output statements, Control statements, Arrays, Repetitive and logical structures, Subroutines and functions.						15	
2	Numerical Methods of Analysis: 15 Roots of a function, Solution of simulteneous linear 15							

		equation, Interpolation and curve fitting, Numerical					
		differentiation and integration, Solution of ordinary					
		differential equations					
	3	Generation of random numbers, Statistical tests of	15				
	-	randomness,, Monte-Carlo evaluation of integrals and Error					
		Analysis.					
		Simulations II :					
	4	Inhomogeneous distribution and Importance of datasampling,	15				
		Metropolis algorithm, Brownian motion as random walk					
		problem and its Monte-Carlo simulation.					
		TEXT BOOKS					
1.	S. S. M. Wong, Computational Methods in Physics and Engineering, World Scientific,						
	Singapore, 2 nd Edition, 1997.						
2.	C. F. Gerald, Applied Numerical Analysis, Pearson/Addison Wesley, UK, 7 th Edition,						
	2003.						
3.	Teukolsky, Vetterling and Flannery, Numerical Recipes: The Art of Scientific						
	Computing, Cambridge University Press, 3 rd Edition 2007.						
4.	Landau and Binder, A Guide to Monte Carlo Simulations in Statistical Physics,						
	Cambridge University Press, 3 rd Edition, 2013.						
5.							
	Delhi, 4 th Edition, 2015.						
6.	V. Rajaı	raman, Computer Programming in FORTRAN 90/95, Prentice	Hall of India, New				
	Delhi, 1 st Ed	dition, 2015.					

Modern Optics

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester:	Contact hours per		
	Modern Optics						week: 3+1		
2022-24	Modelli Oplies	3	1	0	4	I (1 st Year)	Total Hours: 60=45+15		
Subject Code:	Applicable to	Evalu		30	Examination Duration: 3 hour				
SBS PHY 01	Programs:	ation	CIE	Marks					
102 GEC 3104	GEC 3104 M.Sc. Physics		••• ••	DC					
		(Total Marks : 100)	TEE	70 Marks		Prerequisite of Course: B.Sc. with Physics			
Course Description	The course has focus on the Geometrical and wave optics, thin films, Holography, optical fiber, liquid crystals, LED and Photonic band gap crystals.								
Course Objectives	 To understand the fundamentals of optics. To impart knowledge about different physical phenomena. To update the students with the latest technologies. 								
Course Outcomes									
COURSE SYLLABUS									
Unit No. Content of Each Unit						H	ours of Each Unit		

	An overview of Geometrical and Wave Optics:	
1	Laws of Reflection, Refraction, Total Internal Reflection; Ideas of Interference, Diffraction, Polarization, Dispersion.	15
2	Fresnel Relations: Conductors, Thin Films: Reflection Model, Matrix Formalism, Coating Design, Fourier Optics: Wave Propagation, Fraunhofer Diffraction, Fresnel Diffraction, Spatial Filtering, Holography and Holograms.	15
3	Coherence, Interference and Visibility, Laser Physics: Overview, Gain Saturation, Light-Atom Interactions, Optical Gain and Pumping Schemes, Output Characteristics, Light Shifts and Optical Forces, Atom-Photon interactions.	15
4	Fiber Optics:Mode Analysis, Single mode and multimode optical fiber, Loss and Dispersion, Photonics Band-gap Crystals, Liquid crystals, Introduction of LED.	15
	TEXT BOOKS	
 G. R. Fowl J. T. Verde E. Hecht, C Pedrotti,In B. E. A. Sa 	egman , Lasers, University Science Book, USA, Revised Edition, 1986. les , Introduction to Modern Optics, Dover Publication, USA, 2 nd Edition eyen , Laser Electronics, Prentice-Hall, India, New Delhi, 3 rd Edition, 199 Optics, Addison Wesley, USA, 4 th Edition, 2001. troduction to Optics, Pearson UK, 3 rd Edition, 2006. leh and M. C. Teich , Fundamentals of Photonics, Wiley, United States, , Optics, Tata McGraw-Hill, New Delhi, 6 th Edition, 2017.	95.

Physics of Digital Photography

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester:	Contact hours per
	Physics of						week: 3+1
2022-24	Digital Photography	3	1	0	4	I (1 st Year)	Total Hours: 60=45+15
Subject Code:	Applicable to	Evaluation		30 Marlar	Exami	nation Durat	ion: 3 hours
SBS PHY 01 103 GEC 3104	Programs: M.Sc. Physics	(Total	CI	Marks			
105 622 5104	Wilde. Thysics	Marks: 100)	Е				
			TE E	70 Marks	Prerequisite of Course: B.Sc. with Physics		
Course	The aim of this co	urse is to provid	e a the	oretical ov	erview o	f the photogra	aphic imaging
Description	The aim of this course is to provide a theoretical overview of the photographic imaging chain. The course is intended to serve as a link between imaging science and photographic practice.						
Course Objective	 To become proficient at the technical aspect of photographing with a digital camera. To develop and practice skills using digital photography tools and the Internet is a ball. 						
	 To develop the habit of looking closely at the visible world around you in order to represent it in terms of aesthetics, beauty and truth. – To look at what you are seeing and to see what you are looking at. 						
Course	On completion of	the course, stude	nt wou	ld be able:			
Outcomes	CO103G.1. To un	derstand the pho	tograp	hic optics &	& method	ls	
	CO103G.2. To un	derstand the basi	c princ	ciple of pho	otograph	y	
	CO103G.3. To un	derstand the theo	ory of e	exposure			
	CO103G.4. To understand about the image quality						

	COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit					
	Fundamental optical formulae: Image formation: Refraction, Gaussian optics, Lens refractive power, Magnification, Focal length, Lens focusing movement						
1	Field of view: Entrance and exit pupils, Chief and marginal rays, Angular field of view, Field of view area, Focal-length multiplier, Depth of field: Circle of confusion, Depth of field equations, Hyperfocal distance, Focus and recompose limits, distortion, Exposure: Photometry, Flux emitted into a cone, Relative aperture, f- number, Working f-number, f-stop, Natural vignetting, Photometric exposure, Exposure value, f-number for aplanatic lenses	15					
2	History of photography: Pinhole Camera, Camera Obscura, Normal Human Eye and Process of Seeing-Human eye and camera, Camera principles: Compact cameras and SLR's - Working of SLR camera- Different image sensors-CCD and CMOS. Angle of view- Different types of lenses- normal lens, wide angle lens, fish eye lens, prime lens, telephoto lens. Depth of Field-Shallow depth of field, large depth of field, Depth of focus - circles of confusion	15					
3	Exposure strategy : Digital output, Sensor response, Colour, Digital output levels, Dynamic range, Tonal range, Tone reproduction, Gamma, Tone curves, Histograms, verage photometry, Reflected-light metering, Average scene luminance, Exposure index, ISO speed, Standard output sensitivity, Exposure modes: Metering modes, Exposure compensation, Aperture priority (A or Av), Shutter priority (S or Tv), Program mode (P), Manual mode (M)	15					
4	Image quality : Colour temperature, White balance, Color space, Lens MTF, sharpness, Signal-to-noise ratio, Different Image capturing formats: RAW, TIFF, JPEG, Storage Devices- SD card CF card, Principles of Composition: Perspective - Space (Negative and Positive), Directional lines-Golden Section and Rule of the Third, Colour	15					

	Theory
	TEXT BOOKS
1.	Steven Heller, A History of Photography: From 1839 to the Present
2.	Tom Ang, Photography: The Definitive Visual History
3.	Todd Gustavson and George Eastman House, Camera: A History of Photography from
	Daguerreotype to Digital by Understanding Exposure, Fourth Edition by BRYAN PETERSON.
4.	DK, Digital Photography Complete Course Hardcover
5.	Fil Hunter, Steven Biver and Paul Fuqua, Light Science & Magic: An Introduction to
	Photographic Lighting by Understanding Color in Photography by Bryan Peterson.
6.	Andy Rowland, Physics of Digital Photography by (IOP Publishing).

RENEWABLE ENERGY RESOURCES

Scheme Version:	Name of the Subject:	L	Т	Р	С	Semester:	Contact	
2022-24	Renewable Energy						hours per week: 3+1	
	Resources	3	1	0	4	\mathbf{I} (1 st Year)	Total Hours: 60=45+15	
Subject Code: SBS PHY 01 104	Applicable to Programs:	Evaluation	CIE	30 Marks	Exan	nination Durati	on: 3 hours	
GEC 2002	M.Sc. Physics	(Total Marks): 100	TEE	70 Marks		Pre-requisite of course: 10+2 with Non-Medical		
Course Description	To introduce the pattern of modern applications.	of fuel consumption	on, energy	demand, va	arious re	newable sources	s of energy and	
Course Objectives	• The course trea	ts the basics of v nethods; it is suita						
Course Outcomes:	On completion of this cou	urse, student will l	earn:					
Outcomes:	CO104G.1 The Course w	vill create awarenes	ss among s	students abo	out Non-	Conventional so	ources of energy	
	technologies and provide			-				
	CO104G.2 The Course we enable them to understand		-		-			
	CO104G.3 It creates aw	-			•			
	provide adequate inputs of	-			0		8	
	CO104G.4 To teach fund	•			•		ocesses, storage,	
	utilization, and safety tha	•	-	-		•		
		-			es in automotive industries and hydrogen as about 40% energy is being consumed by			
	CO104G.6 To give an id	lea about different	t biomass	and nuclear	r as ener	gy source and t	heir processing	
	and utilization for recover			-		-	-	
	wastes are utilized for refields.	for recovery of value would be immensely useful for the students from all						
		СО	URSE SY	YLLABUS				
Unit No.		Content of						
1.		Content of	Each Un	it			Hours of Each Unit	
	Energy Scenario and So	lar Energy:			<u> </u>			
	Global and Indian E	lar Energy: nergy Scenario	and Ene	ergy Policy			Each Unit	
	Global and Indian En Noncommercial Forms of	llar Energy: nergy Scenario f Energy, Fossil Fu	and Ene	ergy Policy wable Sour	ces, Imp	act of Energy	Each Unit	
	Global and Indian E	l ar Energy: nergy Scenario f Energy, Fossil Fu t, Need for use o	and Ene uels, Rene of New a	ergy Policy wable Sour and Renewa	ces, Imp	act of Energy	Each Unit	
2.	Global and Indian En Noncommercial Forms of Systems on Environment Sources, Solar Thermal a Wind and Geothermal I	blar Energy: nergy Scenario f Energy, Fossil Fu t, Need for use o nd Solar Photovol Energy:	and Ene lels, Rene of New a taic Energ	ergy Policy wable Sour and Renewa gy.	ces, Imp able En	act of Energy ergy	Each Unit	
	Global and Indian En Noncommercial Forms of Systems on Environment Sources, Solar Thermal a Wind and Geothermal I Wind Energy Basics- Glo	Dar Energy: hergy Scenario f Energy, Fossil Fu t, Need for use nd Solar Photovol Energy: obal circulation, Fo	and Ene uels, Rene of New a taic Energ	ergy Policy wable Sour and Renewa gy. uencing Win	ces, Imp able End	act of Energy ergy ssure gradient	Each Unit 15	
	Global and Indian En Noncommercial Forms of Systems on Environment Sources, Solar Thermal a Wind and Geothermal I	blar Energy: nergy Scenario f Energy, Fossil Fu t, Need for use of nd Solar Photovol Energy: obal circulation, Fo Local and Regio	and Ene uels, Rene of New a taic Energ orces influ onal Wind	ergy Policy wable Sour and Renewa gy. aencing Win systems, C	ces, Imp able End nd - Pres Geotherm	act of Energy ergy ssure gradient nal Tidal and	Each Unit 15	

3.	Hydrogen Energy and Fuel cells:	15			
	Hydrogen Energy-production and storage, Production Processes: Thermo chemical				
	Water Splitting, Gasification, Pyrolysis methods. Electrochemical, Electrolysis, Photo				
	electro chemical. General storage methods, compressed storage, Zeolites, Metal				
	hydride storage, chemical hydride storage and cryogenic storage. Fuel cells-				
	Thermodynamics and performance of Fuel Cells, Its working, construction,				
	classifications and applications.				
4.	Biomass and Nuclear Energy: Biomass Energy and application, Techniques for biomass assessment, Thermochemical conversion of biomass, Mini/micro hydro power: classification of hydropower schemes, Nuclear Energy: Fission, Fusion, Different type of nuclear reactors, Nuclear waste disposal and environment measures. REFERENCE BOOKS	15			
	gy: S. P. Sukhatme, (Tata McGraw Hill).	I I 0 006			
	Prakash .J, "Solar energy fundamentals and applications", Tata McGraw Hill publishing C	co. Ltd, 2006.			
U	i, Principles of Fuel Cells, Taylor and Francis, 2005.				
	tals of Renewable Energy Processes, Aldo Vieira da Rosa, Elsevier Academic Press.	6			
 J Twidell and T Weir, Renewable Energy Resources, Taylor and Francis (Ed), New York, USA, 2006. KC Khandelwal, SS Mahdi, Biogas Technology - A Practical Handbook, Tata McGraw Hill, 1986. 					
	Introduction to Wind Energy, CWD Report 82-1, Consultancy Services Wind Energy De	veloping			
Countries,		, cioping			
_	and GF Hewitt, Introduction to Nuclear Power, Hemisphere Publishing, New York, 1987.				

STATISTICAL MECHANICS

Scheme	Name of the	L	Т	Р	C	Semester:	Contact
Version:	subject:						hours
	Statistical						per
	Mechanics						week:
2022-24							3+1
						II (1 st Year)	Total
		3	1	0	4		Hours:
		5	1	0	-		60=45+15
Subject Code:	Applicable to	Evaluation	CIE	30	Exami	nation Durat	ion: 3 hours
SBS PHY 01	Programs:			Marks			
201 CC 3104	M.Sc. Physics	(Total Marks:					
		100)	TEE	70		rerequisite of	
				Marks		duation Level	-
					Mec	hanics and Ma	
						Physics	5
Course	This course is de	eveloped for under	standin	g of thermo	odynamie	cs and statistic	al mechanics,
Description	which have bro	bad and rich app	licabili	ty in quan	tum me	chanics, cond	lensed matter
-	physics, classica	al mechanics and e	lectrod	ynamics.			
	• To t	inderstand the funda	mentals	of thermody	namics a	nd statistical m	echanics
	_						
Course		nake familiar with va		-			
Objectives		ntropy, free energy, ni-Dirac statistics et		pace, statist	ical ensei	mbles, Bose-Eli	nsteinstatistics,
	1 011	In Dirac statistics et	с.				
		ble the students for s	solve the	e problems re	elated to t	hermodynamic	s and statistical
	phys	sics					
	At the end of the	is course, the stude	ents wil	l be able to			
						136 ***	1
	CO201C.1. exp	lain the various the	ermody	namıcal qu	antities a	and Maxwell's	s relations
Course Outcomes	CO201C.2 appl	y the thermodynar	nics in	ideal gas, n	nagnetic	and dielectric	materials
	CO201C.3. des	cribe various statis	tical ap	proaches w	hich des	cribe systems	of particles
	CO201C.4. eva	luate the formulae	e of ran	dom walk a	nd diffu	sion equation	
	CO201C.5. com	pare microstates,	macros	tates, and s	tatistical	ensembles	

	CO201C.6. understand the theories and mathematical approaches of statistical ensembles, equipartition theorem and Maxwell-Boltzmann statistics							
	CO201C.7. illustatre the fundamental concepts of Bose-Einstein and Fermi-Dirac Statistics							
	CO201C.8. calculate the problems related to Bosons and Fermions							
	COURSE SYLLABUS							
Unit No.	Content of Each Unit	Hours of Each Unit						
1	Review of Thermodynamics:Extensive and intensive variables, laws of thermodynamics, Entropy for Different Systems, Gibbs Paradox, Boltzmann Relation for Entropy, Legendre Transformations and Thermodynamic Potentials, Chemical Potential, Free Energy and Its Connection with 	15						
2	Statistical Methods and Description of Systems of Particles : Binomial distribution, Poisson distribution, Gaussian distributions, Central Limit Theorem, Random Walk and Brownian Motion, Diffusion Equation, Phase Space, Liouville's Theorem, Phase Equilibrium, Microstates and Macrostates, Statistical Ensembles, Irreversibility and the Attainment of Equilibrium	15						
3	Classical Statistical Mechanics: Micro-Canonical Ensemble, Canonical Ensemble: Derivation of Partition Function and Thermodynamic Quantities; Mean Values and Fluctuations, Grand Canonical Ensemble: Gibbs Factor; Gibbs Distribution; Derivation of Partition Function and Thermodynamic Quantities; Fluctuations in the Number of Particles, Applications of Canonical and Grand Canonical Ensembles, Equipartition Theorem and It's Applications, Maxwell-Boltzmann Statistics.	15						
4	Quantum Statistical Mechanics: Bosons: Occupation Number; Bose-Einstein Statistics; Debye Theory of Specific Heat; Grand partition function For Ideal Bose	15						

	Gas; Black-Body Radiation; Bose-Einstein Condensation, Fermions: Occupation Number; Fermi-Dirac Statistics; IdealFermi gas, Pauli Paramagnetism, First and Second Order Phase Transitions, Ising Model, Phase Equilibria: Equilibrium Conditions; Simple Phase Diagrams; Clausius-Clapeyron						
	Equation.						
	TEXT BOOKS						
1.	F. Reif, Fundamental of Statistical and Thermal Physics, McGraw-Hill, USA, 1965.						
2.	L. D. Landau and E. M. Lifshitz, Statistical Physics, UK, 3rd Edition, 1980.						
3.	D. V. Schroeder, An Introduction to Thermal Physics, Addison Wesley Longman, UK, 2000.						
4.	4. J. P. Sethna , Statistical Mechanics: Entropy, Order Parameters and Complexity, Oxford University Press, UK, 2006.						
5.	M. Kardar, Statistical Physics of Particles, Cambridge University Press, UK, 2007.						
6.	6. H. Gould and J. Tobochnik , Statistical and Thermal Physics: With Computer Applications, Princeton University Press, USA, 2010.						
7.	7. K. Huang , Statistical Mechanics, Wiley, India, 2 nd Edition, 2011.						
8.	R. K. Pathria and P. D. Beale, Statistical Mechanics, Academic Press, USA, 2011.						

Classical Electrodynamics

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version	subject:		_			~	Hours per
:							Week: 4
•	Classical						vv cent 1
	Electrodynamic					-	Total Hours:
	S					II	
2022-24		3	1	0	4	11	60=45+15
				-		(1 st Year)	
						· · · ·	
Subject Code:	Applicable to	Evaluation		30	Fyami	nation Dura	ation: 3 hours
SBS PHY 01	Programs:	Evaluation		Marks	Елапп		uon. 5 nouis
202 CC 3104	M.Sc.Physics	(Total	CIE	IVIALKS			
202 CC 3104	M.SC.Physics	Marks:100)					
				70	Prerec	uisite of Co	urse: None
				Marks		-	
			TEE				
Course	This course is des	•		nowledge	e of basi	c electrodyn	amics and it's
Descriptio	applications to var	cations to various phenomena.					
n							
Course	 To evaluat 	e fields and forc	es in Ele	ectrodyna	mics an	d Magneto d	ynamics using
Objectiv	basic scier	tific method.					
e							
	^	e concepts of rel		electrody	mamics	and its applie	cations in
	branches o	of Physical Scien	ces.				
	-	-		_			
Course	On completion of t	he course, studer	nt would	be able:			
Outcomes	CO202C.1. To und	dorstand the basis	a of $a^{1}a$	tractation	2		
	UU202U.I. 10 UN	Jerstand the Dasi		nostatics	5		
	CO202C.2. To us	e of Maxwell ea	uations i	in analys	ing the e	electromagne	tic field due to
	time varying charg	-		-	0		
	CO202C.3. To de			tromagne	etic wave	e and its pro	pagation
	through different n	nedia and interfa	ces.				

CO202C.4. The students will be able to analyze s radiation systems in which the electricdipole, magnetic dipole or electric quadruple dominate.

CO202C.5. The students will have an understanding of the covariant formulation of electrodynamics and the concept of retarded time for charges undergoing acceleration.

CO202C.6. To explain charged particle dynamics and radiation from localized time varying electromagnetic sources.

COURSE SYLLABUS						
Unit No.	Content of EachUnit	Hours of EachUnit				
1	Electrostatics : Coulomb's law, Guass's law, Poisson's equation, Laplace equation, Green's theorem, , Dirichlet and Neumann boundary conditions, Simple boundary value problems illustrating various techniques such as method of images, separation of variables, Green's functions, Multipole expansion. Electrostatics of dielectric media, multipole expansion of energy of a charge distribution in an external field, Boundary value problems with dielectrics; molecular polarisability, Clausius Mossotti Relation, electrostatic energy in dielectric media.	15				
2	Magnetostatics & Maxwell's Equations: Biot-Savart law, Ampere's Law, Vector potential, Magnetic Fields of a Localized Current Distribution, Magnetic Moment, Force and Torque on and Energy of a Localized Current Distribution in an External Magnetic Induction, Singularity in dipole field, Fermi-contact term, Macroscopic Equations, Boundary Conditions on B and H, Methods of Solving Boundary-Value Problems in Magnetostatics, Uniformly Magnetized Sphere, Magnetized Sphere in an External Field; Permanent Magnets, Magnetic Shielding, Maxwell's Displacement Current; Maxwell Equations, Vector and Scalar Potentials, Gauge transformations, Lorentz and Coulomb gauges, Hertz Potential, Time varying fields, Maxwell's equations in free space and linear isotropic media (non conducting) boundary conditions on the fields at interfaces. Poynting theorem, conservation laws for a system of charged particles and electromagnetic field,	15				
3	Electromagnetic Waves: Electromagnetic waves in free space, dielectrics and conductors, skin depth, Plane waves in a non conducting media, Reflection and refraction, polarization, Fresnel's law, Total internal Reflection: Stoke's parameter, Waves in rarefied plasma (ionosphere) and cold magneto-plasma,	15				

	frequency dispersion in Dielectrics, Metals and Plasmas, dielectric	
	constant and anomalous dispersion, wave propagation in Ionosphere and	
	Magnetosphere, group velocity, metallic wave guides, Energy Flow	
	and Attenuation in Waveguides, Coaxial cable, Resonant Cavities, Power	
	Losses in a Cavity; Q of a Cavity, M, propagation modes in waveguides.	
	Radiation and Relativistic Electrodynamics:	
4	Field of a localized oscillating source, fields and radiation in dipole and quadrupole Fields, Centre-fed Linear Antenna, Non-relativistic motion in uniform constant fields, Slowly varying magnetic field : Time varying magnetic field, space varying magnetisc field, Adiabatic invariance of flux through an orbit, magnetic mirroring. Lorentz Transformation, Lorentz invariance of Maxwell's equation. Dynamics of charged particles in static and uniform electromagnetic fields. Radiation- from moving charges and dipoles and retarded potentials, Lienard-Wiechert potentials, Total power radiated by an accelerated charge, Lorentz formula. Four-vectors relevant to	15
	electrodynamics, electromagnetic field tensor and Maxwell's equations, transformation of fields, fields of uniformly moving particles.	

TEXT BOOKS

- 1. **L.D. Landau** and E.M. Lifshitz, Classical Theory of Electrodynamics, Butterworth-Heinemann. Germany, 4thEdition, 1987.
- 2. S.P. Puri, Classical Electrodynamics, Narosa Publishing House, 2011.
- 3. Melvin Schwartz, Principles of Electrodynamics, Dover Publications, UK, 1st Edition, 1987.
- 4. Walter Greiner, Classical Electrodynamics, Springer, Germany, 1st Edition, 1998.
- 5. J. Schwinger, L.L. Deraad Jr, K.A. Milton, W-Y. Tsai and J. Norton, Classical Electrodynamics, WestviewPress, UK, 1998.
- 6. David J. Griffiths, Introduction to Electrodynamics, Benjamin Cummings, USA, 3rd Edition, 1999.
- 7. J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, United States, 2nd Edition, 2003.
- 8. **Charles A. Brau**, Modern Problems in Classical Electrodynamics, Oxford University Press, 1st Edition, 2003.
- 9. L. D. Landau and E. M. Lifshitz & L. P. Pitaevskii, Electrodynamics of Continuous Media Oxford, 1st Edition,2005.
- 10. Wolfgang K. H. Panofsky and Melba Phillips, Classical Electricity and Magnetism, Dover Publications, UK,2nd Edition, 2012.
- 11. Joseph Edminister, Schaum's outline of electromagnetics, New Delhi, 2nd Edition, 2017.

Mathematical Methods in Physics-II

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact Hours
	Mathematical						per
2022-24	Methods in					II (1 st Year)	
	Physics-II	2		0			Total
		3	1	0	4		Hours: 60=45+15
Subject	Applicable to	Evaluation		30		ination Dura	tion: 3
Code: SBS	Programs:	(Total	CIE	Mark	hours		
PHY 01 203	M.Sc. Physics	Marks: 100)		S 70	D		
CC 3104			TEE	70 Mark		quisite of Co ematical Met	
				S	Physic		nous m
Course	This course has	s been develor	bed to		, i i i i i i i i i i i i i i i i i i i		e topics of
Description	mathematical Ph	-	-				1
	Physics. It inclu	-		-		-	
	different transfor	•		-			
	To Make the stu					[
Course		nd Ordinary d		tial equa	tions ir	n Physics.	
Objectives		ries method of		-		•	mials
		ial equation.					
	On completion of	,					
Course	CO203C.1 : to s				-		
Outcomes	CO203C.2 : to u	se the special fi	inction	in Quan	um meo	chanics and	
	electrodynamics CO203C.3 : to perform Fourier transform on a given data set.						
	CO203C.4 : to perform Laplace transform on a given data set.						
		COURSE S			0		
Unit No.		Content of 1	Each U	nit		Hou	rs of Each Unit
	Second Order D	-					
	Separation of						
1	singular points, s		-	-			15
	Hermite, Lague					gonal	
 	properties and re-		ns of th	ese runc	uons.		
	Special function	5.					
2	Spherical harmo	nics and associ	iated L	egendre	polvno	mials.	15
۷	Sturm -Liouvill			-			15
	Wronskian linear	•		U			
		macpendence	·······/ 1111	car acpe			

	Fourier Transforms:						
	Fourier Transforms: Development of the Fourier integral from the Fourier Series, Fourier and inverse Fourier transform,						
3	Convolution theorem. Simple Applications: FTIR,	15					
	Telecommunication systems, Solution of partial differential						
	equation wave equation						
	Laplace Transforms:						
4	I anlace transforms and their properties Convolution						
	TEXT BOOKS						
of Ind 2. Fredri e Physic 3. Georg Acade	 Merle C. Potter and Jack Goldberg, Mathematical Methods, S. CHAND (Prentice Hall of India), New Delhi, 2nd Edition, 1987. Fredrick W. Byron and Robert W. Fuller, Mathematics of Classical and Quantum Physics, Dover Publications, UK, Vol 1 &2, 1970. George Arfken and Hans J Weber, Mathematical Methods for Physicists, Elsevier Academic Press, Cambridge, 7th Edition, 2012. L. A. Pipe, Applied Mathematics for Engineers and Physicists, Dover Publication Inc. 2014. E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, United States, 10th Edition, 2015, K.F.Riley, M.P. Hobson, and S.J.Bence, Mathematical methods for Physicists and Engineers, S. CHAND (Cambridge University Press), New Delhi, 3rd Edition, 2018. 						
Inc. 20 5. E. Kre 10 th E 6. K.F.R Engin	014. yszig, Advanced Engineering Mathematics, John Wiley & Sons, dition, 2015, Riley, M.P. Hobson, and S.J.Bence, Mathematical methods for	United States, Physicists and Edition, 2018.					

LABORATORY-II

Scheme Version:	Name of the subject: Laboratory-II	L	Т	Р	C	Semester:	Contact Hours per Week: 12
2022-24		0	0	12	6	II (1 st Year)	Total Hours: 180
Subject Code: SBS PHY 01 204 CC 00126	Applicable to Programs: M.Sc. Physics	Evaluatio n (Total	CIE	30 Marks	Examir	ation Duratio	n: 3 hours
	N.Se. Thysics	(100a) Marks: 100)	TEE	70 Marks	Prereq	uisite of Cours	e: None
Course Description	The aim & objective of the course is to impart the practical training on various electronics devices such as; Op-Amp, Vibrators, Amplifiers, Michelson interferometer etc. Students assigned the general laboratory work will perform at least twelve (12) experiments from the above mentioned. More experiments of similar nature may be added.						
Course Objectives	 To train students for various electronics experiments and take measurements To train students on various optical instruments like Spectrometer, Michelson Interferometer To have hand on experiment for measurement of magnetoresistance and dielectric constant. 						
Course Outcomes	 After completion of this course, the students will be able to CO204C.1. Understand spectral lines, grating spectra, and interference fringes CO204C.2. Learn the characteristics of Op-Amp, vibrators, clipper, clampers, and DA/ AD CO204C.3. Use excel for plotting graphs 						
	CO204C.4. Understand motion of temperature and magnetic field dependence of Hall						

COURSE SYLLABUS						
Unit No.	Content of Each Unit					
1	 Study of Balmer series and Rydberg constant Op-Amp as inverting and non-inverting amplifier Op-Amp as differentiator, Integrator and Adder e/m by Thomson method Single stage RC coupled amplifier Frequency response of common emitter amplifier Bistable/Monostable/Astable vibrators Grating spectra Refractive index of water and oil using prism Magneto resistance Temperature dependence of Hall coefficient Digital to Analog converter, Analog to Digital converter Michelson Interferometer Faraday Effect Clipper and clampers 	150				
2	 Root finding of a polynomial equation using numerical methods Solving first and second order differential equation numerical methods Numerical integration Generating finite and infinite series 	30				
	TEXT BOOKS					
9th Edit 3. Cambrid	 op and Flint, Experimental Physics, Little hampton Book Services Ltd, Union, 1951. A. C. Melissinos, J. Napolitano, Experiments in Modern Physics, Acdge, Massachusetts, 2nd Edition, 2003. tals, prepared by faculty of the Department of Physics, 2018. 	-				

QUANTUM MECHANICS - II

Scheme	Name of the	L	Т	Р	C	Semester:	Contact
Version:	subject:						hours per
	Quantum						week: 3+1
	Mechanics –						T-4-1
2022-24	II						Total Hours:
		3	1	0	4	II (1 st Year)	60=45+15
							00-43+13
Subject Code:	Applicable	Evaluatio		30	Exami	nation Durat	tion: 3 hours
SBS PHY 01	to	n	CIE	Marks			
201 DCEC 3104	Programs:	(Tatal			_		
	M.Sc.	(Total Marks:		70		uisite of Cou	
	Physics	100)	TEE	Marks	Quanti	Im Mechanics	5-1
		100)					
Course	This course is	designed to	understand	a some ad	vanced t	opics such a	s symmetries,
Description	identical partic	les, approxim	ation metho	ods and rela	tivity in	quantum med	chanics, which
	has broad and rich applicability in condensed matter physics, atomic andmolecular						
	physics, nuclear physics, space science, and chemistry.						
Course Objectives	 To make familiar with various advanced topics of quantum mechanics such as symmetries and conservation laws, fermions and bosons, time independent and time dependent perturbation theories, variational and WKB methods, scattering theory, delta function and relativistic theory To aware the students about applications of advanced phenomena of quantum mechanics in physical, mathematical and chemical sciences 						
	After completion	on of this cou	rse, student	s will be at	ole to		
	-						
	CO201D.1. un	derstand the	concepts o	ot symmetr	ies, con	servation laws	•
Course	fermions						1n
Outcomes	գւ	antum mecha	ames				
	CO201D.2. ap	ply symmetri roblems	es and cons	servation la	ws in va	rious quantur	n mechanical
	CO201D.3. illustatre the time independent and time dependent perturbation theories, the						

	variational and WKB methods					
	CO201D.4. describe the fine structure and Zeeman effect phenomena					
	CO201D.5. explain the basics of scattering theory					
		1 • 1				
	CO201D.6. apply the delta function's properties in various quant problems	tum mechanical				
	CO201D.7. understand the basics of relativistic quantum mechanics					
	CO201D.8. recognize the importance and applications of relativistic quantum mechanics					
	COURSE SYLLABUS					
Unit No.	Content of Each Unit	Hours of Each Unit				
	Symmetries, Conservation Laws & Identical Particles					
1	Transformation in space, The Translation Operator, Translation Symmetry, Conservation Laws, Parity: Parity in One & Three Dimensions; Parity Selection Rules, Rotational Symmetry, Degeneracy, Rotational Selection Rules, Many Particle Systems, Systems of Identical Particles, The Helium Atom, The Pauli Exclusion Principle.	15				
2	Approximation MethodsTime Independent Perturbation Theory: Nondegenerate PerturbationTheory; Degenerate Perturbation Theory; Fine Structure; The ZeemanEffect, The Variational Method, The WKB method, Time DependentPerturbation Theory, Adiabatic & SuddenApproximations.	15				
3	Scattering Theory & The Delta FunctionDifferential cross-section, scattering of a wave packet, integral equation for the scattering amplitude, Born approximation, method of partial waves, low energy scattering and bound states, resonance scattering, The Delta Function: One Dimensional Delta Function and Three Dimensional Delta Function.	15				
4	Relativistic Quantum MechanicsKlein-Gordon equation, Dirac equation, Probability and Current	15				

	Density, Plane Wave Solutions, Symmetries of the Dirac equation,						
	Dirac's Equation for a Central Potential, Covariance of Dirac's						
	Equation, Relativistic Hydrogen Atom Problem, The Hole Theory and						
	Positrons.						
	TEXT BOOKS						
1.	L. D. Landau and E.M. Lifshitz , Quantum Mechanics, Butterworth Heinemann, The Netherlands, 3 rd Edition, 1981.						
2.	P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press, UK, 4th Edition, 1988.						
3.	R. Shankar , Principles of Quantum Mechanics, Springer, Germany, 2 nd Edition, 1994.						
4.	N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley, USA, 2 nd Edition, 2009.						
5.	J. J. Sakurai, Modern Quantum Mechanics, Pearson, India, 2 nd Edition, 2013.						
6.	6. L. I. Schiff, Quantum Mechanics, McGraw Hill Education, USA, 4 th Edition, 2017.						
7.	7. D. J. Griffiths , Introduction to Quantum Mechanics, Cambridge University Press, UK, 3 rd Edition, 2018.						
8.	C. Cohen-Tannoudji, B. Diu, and F. Laloe , Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Applications, Wiley, USA, 2 nd Edition, 2019.						

Introduction to Astronomy and Astrophysics

Scheme Version: 2022-24	Name of the subject: Introduction to Astronomy	L	T	Р	C	Semester:	Hours per
	and Astrophysics	3	1	0	4		Total Hours: 60=45+15
Subject Code: SBS PHY 01 202	Applicable to Programs: M.Sc. Physics	Evaluation (Total Marks: 100)	CIE	30 Marks	Du	amination ration: 3hc	urs
DCEC 3104			TEE	70 Marks	Ge Ma	erequisite: neral athematics	
Course Description	To make the students aware about different theoretical and observational technique adopted in understanding astrophysics and astronomy						
Course Objectives	 The objective of this course is to make the students Understand coordinate systems in Astronomy Understand the Sun Understand Binary stars. Understand stellar distances 						
Course Outcomes	On completion of the course, student would be able to : CO202D.1 : differentiate between various coordinate systems CO202D.2 : know about the characteristics of Sun CO202D.3 : Know about Binary stars and their motions CO202D.4 : Know about stellar distances and other properties						
		COURSE S	YLLAB	US			
Unit No.		Content of E	ach Uni	t		Ho	ours of Each Unit
1	Equatorial, Eclip Conversion from sky from differe Sidereal. Appare Calendar. Julia Determination of	rvational Data:onomical Coordinates- Celestial Sphere, Horizon,torial, Ecliptic and galactic system of coordinates,ersion from one coordinate system to another. Aspects offrom different places on the earth. Twilight, Seasons,eal. Apparent and Mean solar time and their relations.ndar. Julian date and heliocentric correction.rmination of Mass, luminosity, radius, temperature andnce of a star, H-R Diagram, Empirical mass-luminosity				15	

	Stellar Distances and Magnitudes :					
	Distances of stars from the trigonometric, secular and					
	moving cluster parallaxes. Stellar					
	motions. Magnitude scale and magnitude systems.					
2	Atmospheric extinction. Absolute	15				
	magnitudes and distance modulus. Colour index. Black-body					
	approximation to the continuous					
	radiation and temperatures of stars. Variable stars as distance					
	indicators.					
	Binaries and Variable Stars :					
	Visual, spectroscopic and eclipsing binaries. Importance of					
	binary stars as source of basic					
3	astrophysical data. Classification and properties of various	15				
	types of intrinsic and eruptive					
	variable stars. Astrophysical importance of the study of					
	variable stars. Novae and Supernovae.					
	Sun :					
	Physical Characteristic of Sun – Basic data, solar rotation,					
4	solar magnetic fields, Photosphere- granulation, sun-spots,	15				
4	Babcock model of sunspot formation, solar atmosphere-	15				
	chromospheres and corona, Solar activity – flares,					
	prominences, Solar wind, activity cycle, Helioseismology					
	TEXT BOOKS					
1. W.M.Sma	rt: Text book of Spherical Astronomy, Cambridge University Pres	ss; 6th edition,				
1977						
2. M. Zeilik,	Astronomy, The evolving Universe, Cambridge University Press	, 1 st Edition,				
2002.						
3. P.V. Foukal, Solar Astrophysics, Wiley-VCH, United States, 1 st Edition, 2004.						
	n, Introduction to Astronomy and Cosmology, Wiley, United State	es, 1 st Edition,				
2008						

FUNDAMENTALS OF SOLAR ENERGY

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	Subject:						hours per
	Fundamentals of						week: 3+1
	Solar Energy						
2022-24	Solar Energy	3	1	0	4	TT (1 et X7)	Total
		C C	_		-	II (1 st Year)	Hours:
							60=45+15
Subject Code:	Applicable to			30	Exar	nination Dur	ation: 3
Subject Couct	Programs:		CIE	Marks	hour		
SBS PHY 01							
203 DCEC 3104	M.Sc. Physics	Evaluation				requisite of o	
		(Total				prerequisite o	-
		Marks): 100	TEE	70		this course.	
				Marks		expected to	
					senno	conductor phy	sics.
Course	The course is intende						
Description	contributor to sustain	• •		•			
	technology of solar					-	t need to be
	understood for its effe	cuve use in a va	ariety of	installatio	ns and	uses.	
Course	• The Course w	ill be introducir	ng the stu	idents to a	ll the a	spects of PV t	echnology.
Objectives		asic understandi	ng relat	ed to fabri	ication	ad characteriz	zation of
		s of solar cells.	ld of sol	ar cells ma	teriale	and solar cell	ç
	• To know state of art in the field of solar cells materials and solar cells.						
Course	On completion of this course, student will learn:						
Outcomes:	CO203.1 The availabl	a solar aparay a	nd the cu	rront color	anara	convorsion o	ndutilization
	processes, solar spectr			intent solai	energy	conversion a	
	processes, solar speen	um.					
	CO203.2 The factors	that influence th	ne use of	solar radia	ation as	s an energy so	urce.
	CO203.3 The various active and passive technologies that are available for collecting solar						
	energy; have the ability to apply design principles to selection of an appropriate solar						
	energy installation to meet requirements.					•	
	CO202 4 Harris - 1	-	h4 int - 1	la atul - 14 1		lan aall	f
	CO203.4 How solar c how solar cells are eva	-	nt into e	lectricity, l	10W SO	iar cells are m	anuractured,
		anualtu.					
	CO203.5 What techn	ologies are cur	rently or	n the mark	et, and	l how to eval	uate the risk

	and potential of existing and emerging solar cell technologies. CO203.6 To examine the potential & drawbacks of currently m as well as pre-commercial technologies. How to enhance solar ce cost, and the major hurdles-technological and economic, toward	ell performance and reduce
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1.	Solar Radiation: origin, solar constant, spectral distribution of solar radiation, absorption of solar radiation in the atmosphere, global and diffused radiation, seasonal and daily variation of solar radiation, measurement of solar radiation, sun tracking systems, photo thermal conversion, solar energy collectors, collector efficiency and its dependence on various parameters.	15
2.	Solar energy: storage of solar energy, solar pond, solar water heater, solar distillation, solar cooker, solar green houses, solar dryers, absorption air conditioning. solar fuels: electrolysis of water, photoelectrochemical splitting of water.	15
3.	Fundamentals of solar cells:Photo voltaic effect, semiconductor properties, energy levels, basic equations, p-n junction its characteristics, fabrication steps, thermal equilibrium condition, depletion capacitance, junction breakdown, heterojunction. Silicon based solar cells: single crystal, polycrystalline and amorphous silicon solar cells.	15
4.	Device physics:Solar cell device structures, construction, output power, efficiency, fill factor and optimization for maximum power, surface structures for maximum light absorption, current voltage characteristics in dark and light, operatingtemperature vs conversion efficiency, charge carrier generation, recombination and other losses. Cadmium telluride solar cells, copper indium gallium selenide solar	15

		cells, organic solar cells, perovskite solar cells, Advanced concepts in photovoltaic research.				
		REFERENCE BOOKS				
1.	1. S P Sukhatme, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill, 1996.					
2.	Solid Stat	e Electronic Devices, Ben. G. Streetman, S. K. Banerjee, PHI Leaning Pvt. Ltd, 2000.				
3.	3. D. Yogi Goswami, <u>Frank Kreith</u> , <u>Jan F. Kreider</u> , Principles of Solar Engineering, Taylor and Francis, 2000.					
4.	4. Jasprit Singh, Semiconductor Devices, Basic Principles, Wiley, 2001					
5.						
6.	H P Garg Ltd, 2006	, J Prakash, Solar energy fundamentals and applications, Tata McGraw Hill publishing Co.				

Accelerator Physics

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						hours per
	Accelerator						week: 3+1
2022-24	Physics						Total
2022-24		3	1	0	4	II (1 st Year)	Hours: 60=45+15
							00=45+15
				20	. .		
Subject Code: SBS PHY 01	Applicable to	Evaluation		30 Marks	Exami	nation Durat	tion:3 hours
204 DCEC	Programs: M.Sc. Physics	(Total	CIE	WIAIKS			
3104	ja ta	Marks: 100)		70	Prerec	uisite of Cou	Irse: Nuclear
			TEE	Marks	-	s, Electrodyna	
					Quantu	m mechanics	
Course	This course is inter	nded to expose t	he stud	lents to the	oretical c	lesign and usa	ge of various
Description	particle accelerator	rs.					
Course	• To und	lerstand the beam	optics.				
Objectives	Get knowledge about different types of accelerators						
	• To understand the main features of superconducting cyclotron, linear accelerators						
	and hig	gh energy accelera	ators.	_	-	-	
	After completion of	of this course, st	udents	would be a	ble to:		
	CO201D 1 Und	arctand the bee	monti	og & haar	n trance	ort evetor	
	CO204D.1. Und	erstand the Dea	in opu		n uansp	511 SYSICIII.	
Course	CO204D.2. About			hniques to	accelerat	e particles an	d technical
Outcomes	details of electrost	atic accelerators					
	CO204D.3. Get kr	nowledge about	latest a	ccelerator t	echnolog	gy based on R	f cavities.
	CO204D.4. About	Svnchrotron Ra	adiatior	is & produc	ction of r	adioactive ion	beams.

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
	Charged Particle Dynamics:	
1	Particle motion in electric and magnetic fields, Beam transport system, Beam pulsing and bunching techniques, microbeams, Particle and ion sources, secondary beams, Measurement of beam parameters.	15
	Electrostatic and Heavy Ion Accelerators:	
2	Van de Graaff voltage generator, Cockcroft-Walton voltage generator, insulating column, voltage measurement, Acceleration of heavy ions, Tandem electrostatic accelerator, Production of heavy negative ions, Pelletron and Tandetron, Cluster beams.	15
	Radiofrequency Accelerators:	
3	Linear accelerators - Resonance acceleration and phase stability, electron and proton Linacs, Superconducting Heavy Ion Linear Accelerators. Circular accelerators- Cyclotron, Frequency Modulated Synchrocyclotron, AVF Cyclotron, Alternating- gradient accelerators.	15
	Synchrotron Radiation Sources:	
4	Electromagnetic radiation from relativistic electron beams, Electron synchrotron, Characteristics of synchrotron radiation. Production of Radioactive ion beams, Polarized beams, Proton synchrotron, Colliding accelerators.	15
	TEXT BOOKS	
. M.S. Livings	ton and J.P. Blewel, Particle Accelerators, McGraw-Hill Book Press,	1962.
. Ed. J. Cerny	, Nuclear Spectroscopy and Reactions Part-A, Academic Press, 1974.	
. H.J. Wiedma	an, Particle Accelerator Physics, Vol I and II, Springer Verlag, 1998.	
. S. Y. Lee , Ac	ccelerator Physics, World Scientific, Singapore, 2004	

Radiation Physics

Scheme	Name of the	L	Т	Р	С	Semester:	Contact	
Version:	subject:						hours per	
	Radiation						week: 3+1	
	Physics						Total	
2022-24	1 119 510 5					\mathbf{T} (1st \mathbf{V})	Hours:	
		3	1	0	4	II (1 st Year)	60=45+15	
				20			21	
Subject Code: SBS PHY 01	Applicable to	Evaluation		30 Marks	Exami	nation Durati	on:3 hours	
205 DCEC	Programs: M.Sc. Physics	(Total	CIE	Marks				
3104	W1.90. 1 Hysics	Marks: 100)		70	Prerec	Prerequisite of Course: Nuclea		
			TEE	E Marks	Physics, Electrodynamics,			
					Quantu	im mechanics		
Course	To impart knowled	lge in denth abo	ut nucl	ear radiatio	on, its de	tection, nuclear	r	
Description	To impart knowledge in depth about nuclear radiation, its detection, nuclear spectrometry and related aspects							
	1 5	Ĩ						
	• To aware	the students ab	out the	e various f	type of r	uclear radiatio	ons and their	
Course		with matter			51			
Objectives	T 1							
	• To learn v	arious techniqu	hniques for detection of radiations					
	• To study t	he nuclear spect	rometr	у				
	A.C. 1	6.4	1 (1 1 1	11 /			
	After completion of	of this course, st	udents	would be a	ible to:			
	CO205D.1. Under	stand nuclear ra	diatior	and its de	etection p	procedure, nucl	ear	
Course	spectrometry.							
Outcomes	CO205D.2. Know	w applications	of nu	clear spec	trometry	7		
	CO205D.3. Know	how to solve pr	oblama	ralated to	anfaty on	next of nuclear	radiation	
	CO203D.3. KHOW	now to solve pl	oucins	5 101210 10	salety as	peer of nuclear		
	CO205D.4 Understand the nuclear spectroscopy and basics of nuclear medicine.					cine.		
	COURSE SYLLABUS							

Unit No.	Content of Each Unit	Hours of Each Unit
1	Interaction of Nuclear Radiations:Origin and energy spectra, Brief discussion of interactions of gamma rays, Electron and heavy charged particles with matter, Different types of neutron sources, Interaction of neutron with matter, Neutron detectors.	15
2	Nuclear Radiation Detector:Gas filled detectors; Ionization chamber, Proportional counter and GM counter, Scintillation detector, semiconductor detector for X-rays, gamma rays and charged particle detection, Radiation exposure, Biological effects of radiation, radiation monitoring	15
3	Nuclear Spectrometry and Applications:Analysis of nuclear spectrometric data, measurement of nuclear energy levels, spins, parities, moments, internal conversion coefficients, Angular correlation, Perturbed angular correlation, measurement of g-factor and hyperfine fields.	15
4	Mossbauer Effect:Positron annihilation, particle and photon induced x-ray emission,Elemental concentration analysis by charged particles and neutronactivation analysis, Diagnostic nuclear medicine, Therapeuticnuclear medicine.	15
	TEXT BOOKS	
1. 2. 3.	 Knoll G. F., Radiation Detection and Measurement, John Wiley & Son Singuru R. M., Introduction to experimental nuclear physics, Wiley E 1987. Muraleedhara V. Nuclear radiation Detection, measurement and Ar Publishing House, 2009. 	astern Publications,

Computational Physics

Scheme	Name of the	L	Т	Р	C	Semester:	Contact
Version:	subject:						hours per
2022-24	Computational Physics	3	1	0	4	II (1 st Year)	week: 3+1 Total Hours: 60=45+15
Subject Co	ode: Applicable to	Evaluation		30	Exami	nation Durati	on: 3 hours
SBS PHY 206 DCEC	- 8	(Total Marks:	CIE	Marks			
3104		100)	TEE	70 Marks	Prerec	uisite of Cour	se: None
Course	· · · J · · · ·						
Descripti	tion techniques to solve integration, differentiation and molecular dynamics simulation techniques.						
Course		To train students for computer programming					
Objectiv		students familiar with simulation techniques tudents for executing many body problems related computer programs				ter programs	
Course Outcom	es computa • the comp	of the course, student would be able: utations techniques to solve various differential equations mputational integration olecular simulations and optimization techniques.					IS
		COURSE	SYLL	ABUS			
Unit No.		Content of Eac	ch Unit			Hours of	f Each Unit
1	Stochastic Processes: Theory of random walks and simulation of random walks in one, two and three dimensions. Elementary ideas and simulations of self- avoiding walks, additive and multiplicative stochastic processes, Brownian motion and fractional Brownian motion.						

	Numerical Integration and Stochastic Differential Equations:	
2	Dynamical equations, Finite Difference Method, Langevin dynamics, TDGL equation, Cahn-Hilliard equation, Burgers' equation, KPZ model, Traffic Flow Dynamics.	15
3	Molecular Dynamics (MD) and Monte Carlo (MC) Simulations: Elementary ideas of molecular dynamics simulation, Physical potentials, Verlet algorithm. Time average and Ensemble average, Monte Carlo methods, Metropolis algorithm. Application of Monte- carlo simulations: (a) Ising model in magnetism (b) Glauber and Kawasaki dynamics.	15
4	 Combinatorial Optimization Problems: Classification of problems; examples of optimizationproblems: traveling salesman problem (TSP) and satisfiability (k-SAT) problem; heuristic methods of solutions and simulated annealing technique. Computational experiments using computer programming Finite and infinite series Root finding: (bisection, Secant and Newton-Raphson methods), Solving first and second order ordinary differential equations including simultaneous, equations (Euler and Runge-Kutta methods) Numerical integration (trapezoidal, Simpson, Gauss quadrature, methods) Matrices (arrays of variable sizes, addition, multiplication, eigenvalues, eigenvectors, inversion, solutions of simultaneous equations) To determine Wien's constant using bisection method. To solve Kepler's equation by Newton-Raphson method. To solve van der Waals gas equation for volume of a real gas by the method of successive approximation. To interpolate a real data set from an experiment using the Lagrange's method, and Newton's method of forward differences and cubic splines. To fit the Einstein's photoelectric equation to a 	15

	realistic data set and hence calculate Planck's constant.					
	To estimate the value of π by rectangular method,					
	Simpson rule and Gauss quadrature by numerically					
	evaluating suitable integral.					
	11. To find the area of a unit circle by Monte Carlo					
	integration.					
	12. To simulate Buffen's needle experiment.					
	13. To simulate the random walk.					
	14. To study the motion of an artificial satellite by solving					
	Newton's equation for its orbit using Euler method.					
	15. To study the growth and decay of current in RL circuit					
	containing (a) DC source and (b) AC using Runge					
	Kutta method, and to draw graphs between current and					
	time in each case.					
	16. To study the motion of two coupled harmonic oscillators.					
	10. To study the motion of two coupled narmonic oscillators.					
	TEXT BOOKS					
-	man, Computer Oriented Numerical Methods, Prentice Hall	of India, 3 rd Edition,				
1993.		· · · · · · · · · · · · · · · · · · ·				
•	aman, Computer Programming in FORTRAN 90/95, Prent	ice Hall of India, 1 st				
Edition,1997.						
	kel & B. Smit, Understanding Molecular Simulation, Acader	mic Press,2 nd				
Edition,2001						
	ke & B. Bergersen, Equilibrium Statistical Physics, World S	Scientific, 3 rd Edition,				
2006.						
	1. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling, Numerical Recipes in					
C/C++: The Art of Scientific Computing, Cambridge University Press, 3 rd Edition, 2007.						
2. M. P. Alle	en, Computer Simulation of Liquids, Oxford University Press,	2 nd Edition , 2017.				
3. Kurt Binder and Heerman, Monte Carlo Simulation in Statistical Physics, Springer, 6 th						
Edition,2019.						
1						

Analog Electronics

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						hours per
							week: 3+1
	Analog						
2022-24	Electronics						Total
		3	1	0	4	II (1 st Year)	Hours:
		C	-	0			60=45+15
Subject Cod	le: Applicable to	Evaluatio		30	Exami	nation Durat	ion: 3 hours
SBS PHY 01		n		Marks			
207 DCEC	M.Sc. Physics		CIE				
3104		(Total		70	Droroo	uisite of Cou	Prov Nono
		Marks:		Marks	Trerey		ise. None
		100)	TEE	IVIAI KS			
Course	This course covers	-		-		-	
Description				-			
	-	equivalent circuit models for diodes, transistors, and op-amps. Frequency response of					
	-	cascaded amplifiers and gain-bandwidth considerations. Concepts of feedback, stability					
	and nequency con	and frequency compensation.					
Course	To introdu	To introduce students to entire circuit designs					
Objective		• To provide in-depth theoretical base of Digital Electronics					
	To provide	e in-depth theo	oretical b	ase of Digit	al Electr	onics	
Course	On completion of t	On completion of the course, student would be able:					
Outcomes	*						
0	CO207D.1. To un	CO207D.1. To understand the techniques to shape of signals.					
	CO207D 2 To und	longtond the m	incinto o	funnitivita	tom		
	CO207D.2 To unc	ierstand the pr	incipie o		ators		
	CO207D.3 To unc	CO207D.3 To understand basic properties of analog systems					
	CO207D.4 To un	derstand the	fundame	ntal design	ing con	cents of diffe	erent types of
		CO207D.4 To understand the fundamental designing concepts of different types of Logic Gates, Minimization techniques etc.					
		COURS	E SYLL	ABUS			
Unit No.	(Content of Each Unit			Hours	of Each Unit	
1	Linear Wave Shaping :				15		

	 High Pass RC circuits: Its response to step, Pulse, Square wave, Ramp, exponential waveforms, Low pass RC Circuit: Its response to step, pulse, Square wave, Ramp, Exponential wave forms, Its application as an integrator. Attenuators, Time base Signal in a CRO. Operation of Clamping Circuits, Clamping Circuit theorem, Practical Clamping Circuit theorem, Operation of Transistor as a switch. Clipping and Switching Circuits: Diode Clippers, Combinational and Biased clippers Transistor Clippers, Comparators, Applications of Voltage Comparators. 					
	Multivibrators :					
2	A bistable multivibrator-basic concepts of its operation. Symmetrical and Unsymmetrical triggering, Application (brief). Monostable Multivibrator, Basic concepts of its operation, quantitative discussion of Quasi stable state, Application, Astable multivibrator - basic concepts of operation. Quantitative discussion of the period of oscillation, Application.	15				
	Analog Systems:					
3	Operational Amplifier, Differential Amplifier, Transfer Characteristics, Frequency Characteristics, IC Operational Amplifier, Compensation in Operational Amplifiers, Application of OP-AMP as adder, Multiplier, Differentiator, Integrator, Log and Antilog Amplifier, Application of Operational Amplifier to analogue computation.	15				
	Logic Systems:					
4	Basic Concepts of dc positive and negative logic systems, Dynamic logic systems, OR gate and AND gate, NOT gate, NAND gate, EX- OR gate, NOR gate & their applications, Response to input pulse operation. TTL (transistor transistor logic) and DTL (diode transistor logic) logics Binary Adders, Half addersand full adders, Multiplexing and demultiplexing.	15				
	TEXT BOOKS					
2. J. J	Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, 2 J. Cathey, Schaum's Outline of Electronic Devices and Circuits, McGraw Hill I lition, 2002.					
3. R.						
4. A. 5. J.I	4. A.P. Malvino, Electronic Principles, Tata McGraw, New Delhi, 7th Edition, 2009.					

- W. Kleitz, Digital Electronics, A Practical Approach, Pearson, UK, 9th Edition 2011.
 R. J. Tocci, Digital Systems-Principles and Applications, Prentice Hall of India, New Delhi, 10th Edition 2013.
- Millman and Halkias, Integrated Electronics, McGraw Hill, New York, 2nd Edition, 2017. 8.

Environmental Physics

Scheme	Name of the	L	Т	Р	C	Semester:	Contact
Version:	subject:						hours per
	Environmental						week: 3+1
2022.24	Physics						Total
2022-24		3	1	0	4	II (1 st Year)	Hours:
		5	1	0	-		60=45+15
Subject Code:	Applicable to	Evaluation		30	Exami	nation Durat	tion: 3 hours
SBS PHY 01	Programs:	(Total	CIE	Marks			
201 GEC 3104	M.Sc. Physics	Marks:					
		100)		70		uisite of Cou	irse: 10+2
			TEE	Marks	with So	cience	
Course	This source since t	a introduces sta	donta ta	the erreliat	tion of -	ono nhrodool -	onconto of the
Description	This course aims the Earth system, with						-
Description	and climate chan	•		•			· •
	understand natural	-					
Course	a Ta undan	stand the has		a of much	1	which the	nnin sin las of
Objective		ental physics ca	_	_			principles of nonalities that
o sjeen ve		ng widely varyi	-	-	o uppiec		nonunties that
							6 1 1 1
		p problem solv	ing abili	ties and a c	ritical, p	ractical aware	eness ofglobal
	environmental change.						
Course	On completion of	the course, stud	lent wou	ld be able:			
Outcomes	СО202G.1. То	o understand t	he conc	epts like e	energy tr	ansformation	s and various
	forms of energy, climate change and its effect on living beings						
	СО202G.2. То	o understand th	e conce	ots like the	rmodvna	mics and its a	applications to
	CO202G.2. To understand the concepts like thermodynamics and its applications to various energy transformation processes:						TT
	CO202G.3. To develop an awareness of climate change and its effects						
	CO202G.4. To develop an awareness of different fossil fuels and their alternatives						alternatives
		COURSE	ESYLL	ABUS			
Unit No.	(Content of Eac	ch Unit			Hours	of Each Unit

	Introduction to Energy: Importance of energy in science and society. Types of energy	
1	(mechanical, heat, chemical, nuclear, electrical). Law of	15
1	conservation of energy. Energy transformations. Mechanical	15
	energy: force, work, kinetic and potential energy, PE diagrams,	
	conservation of mechanical energy, bound systems. Electricity	
	Basics.	
	Heat Energy and Kinetic Theory	
	Heat and Tem:perature. Internal Energy, Specific Heat. Ideal	
	gas equation. Kinetic theory interpretation of pressure and	
2	temperature. Work, heat, and the first law of thermodynamics. Adiabatic lapse rate. Radiant energy. Blackbody radiation.Heat	15
	engines and the second law of thermodynamics. TheCarnot	
	cycle. Applications of the second law to various energy	
	transformation processes: heat pumps and	
	refrigerators; different engine cycles. Entropy and disorder.	
	Energy and Climate Change:	
	Energy balance of the Earth. Greenhouse effect. Climate	
3	feedbacks (water, clouds, ice albedo). Global Climate Models.	15
	Evidence for climate change. Paleo-climate. Climate change	
	impacts. Climate change mitigation. Target CO ₂ levels.	
	Energy Source [Course Outcome(s):	
	Chemical energy. Energy in biology, photosynthesis,	
	respiration. Energy use in the human body, energy content of	
4	food. Fossil fuels and their origin (coal, oil, natural gas).	
	Problems with fossil fuels, greenhouse pollution, peak oil.	
	Alternatives to fossil fuels. Alternative energy resource: Wind	
	energy, energy from water on land, ocean energy. Biomass and	
	other sources.	
	TEXT BOOKS	
1.	Sol Wieder, An Introduction of Solar Energy for scientists and Engineers,	, John Wiley, United
	States, 1st Edition, 1982.	
2.	J.T. Widell and J. Weir, Renewable Energy Resources, Elbs, 1st Edition,	1988.
3.	R.N. Keshavamurthy and M. Shankar Rao, The Physics of Monsoons,	Allied Publishers, New
	Delhi, 1st Edition, 1992.	
4.	Landau & Lifshitz, Fluid Mechanics, Pergamon Press, UK, 2nd Edition,	2000.
5.	Egbert Boeker & Rienk Van Groundelle, Environmental Physics, John	Wiley, United States,
	2nd Edition, 2000.	
	J.T. Hougtyion, The Physics of Atmosphere, Cambridge University Press	
7.	C. W. Rose, An Introduction to the Environmental Physics of Soil, Water	and Watersheds,
	Cambridge University Press, 1st Edition, 2004.	
8.	R. A. Hinrichs and M. Kleinbach, Energy, Its Use and the Environment,	Brooks Cole, Stanford
	University Press, 4th Edition, 2005.	

- **9. P. Hughes**, **N. J. Mason**, Introduction to Environmental Physics: Planet Earth, Life and Climate, Taylor & Francis, France, 1st Edition, 2005.
- **10.** J. Monteith and M. Unsworth, Principles of Environmental Physics: Plants, Animals and the Atmosphere, Elsevier, 4th Edition, Europe, 2013.
- 11. K.L. Kumar, Engineering Fluid Mechanics, S. Chand, New Delhi, 4th Edition, 2016.

Introduction to Latex and Scilab

Scheme Version:	Name of the subject:	L	Т	Р	С	Semester:	Contact Hours		
2022-24	Introduction					II (1 st Year)	per Week: 6		
	to Latex and Scilab	2	0	4	4		Total Hours:		
Subject Code: SBS PHY 01 202	Applicable to Programs: All Masters/	Evaluation (Total Marks: 100)	CIE	30 Marks	Exam Hours	60=45+15 Examination Duration: 3 Hours			
GEC 2044	Bachelors Program		TEE	70 Marks	Prere Medic	quisite: 10+2 cal	with Non-		
CourseTo impart knowledge to student about different tools used in writingDescriptionscientific/non-scientific literature.									
Course Objectives	Write beautifull	y presentable	docume	ents usin	g Latez	Κ.			
Course Outcomes	On completion of the course, student would be able to:CO202G.1 :Write CV, documents, books and reports.CO202G.2 : Write mathematical formulae using simple commands.CO202G.3 : Produce fonts in different languages like Roman and Greek.CO202G.4 : Write Thesis and seminar presentations using latexCO202G.5 : Tell the advantages of LaTeX & Scilab over other moretraditionalsoftwares.CO202G.6 : install and use MikTeX and Scilab.CO202G.7 : List Scilab & LaTeX compatible operating systems.								
	CO202G.8 : Exp				Scilab				
Unit No.	COURSE SYLLABUS Content of Each Unit Hours of Each Unit				rs of Each Unit				
1	Installation of the s Understanding Late Basic Syntex, Writt Page Layout – Titl Equation references List making environ Table of contents, numbering, List of	ex compilation ing equations, M es, Abstract Cha s, citation. nments Generating new	opters, Se comman	ctions, R ds, Figur	e handli		15		

2	Packages: Geometry, Hyperref, amsmath, amssymb, algorithms, algorithmic graphic, color, tilez listing; Classes: article, book, report, beamer, slides; Applications to: Writing Resumae Writing question paper; Writing articles/ research papersPresentation using beamer.Theory, Practical and exercises based on the above concepts.	15
3	Installation of the softwareScilab. Basic syntax, Mathematical Operators, Predefined constants, Built in functions. Complex numbers, Polynomials, Vectors, Matrix. Handling these data structures using built in functions rogramming • Functions • Loops • Conditional statements • Handling .sci files • Installation of additional packages	15
4	Graphics handling	15

	 2D, 3D Generating .jpg files Function plotting Data plotting Data plotting Applications Numerical Linear Algebra (Solving linear equations, eigen values atc.) Numerical Analysis – iterative methods ODE – Blotting solution curves 	
	Comparison with C / C++/	
	Matlab	
	Text Books	
1. Helmut Ko Edition 200	pka & Patrick W. Daly, Guide to LATEX, Addison-Wesley, Nev 03.	v Delhi, 4 th
2. Stefan Kot	twitz, LaTeX Beginner's Guide, Packt Publishing, UK. 1st Editio	n, 2011
3. Resources f	from websites:	
4. The not so	short introduction to LaTeX - Tobi Oetiker	
https://tobi.oe	etiker.ch/lshort/lshort.pdf	
5. Gilberto E.	. Urroz, Introduction to Scilab, Introduction to SCILAB By Gilber	to E. Urroz, Ph.D.,
P.E. Distril	buted by infoClearinghouse. Com, 2001	

Atomic, Molecular Physics and Lasers

Scheme Version: 2022-24	Name of the subject: Atomic, Molecular	L	Т	Р	C	Seme	ster:	Contact Hours per Week: 4
	Physics and Lasers	3	1	0	4	(2 nd Y	ear)	Total Hours: 60=45+15
Subject	Applicable	Evalu		30	Exam	ination	Dura t	tion: 3
Code: SBS	toPrograms:	ation	CIE	Marks	hours			
PHY 01 301	M.Sc.	(Total		70	Prere	quisite:	: Math	ematical
CC 3104	Physics	Mark	TEE	Marks	Meth	ods in H	Physics	I,
		s:			-	tum M		,
		100)				tical M		
Course	Aim of the co	urse is to	aware stud	ents abou	t variou	is atom	nic and	molecular
Description	spectra and to u	nderstand	the working	of LASE	Rs.			
Course	The stud	lents will b	e exposed t	0				
Objectives			oration spect					
objectives	. Ramar		d Raman sp		y of mol	lecules.		
	On completion	of the cour	se, student	would be a	able to :			
	CO301C.1 : Ur	derstand d	lifferent mo	dels of an	Atom			
Course	CO301C.2 : de	rive the en	ergy distrib	ution corre	espondir	ng to dif	fferent	levels of
Outcomes	an atom							
0	CO301C.3 : Ur	nderstand r	otation spec	troscopy a	and Und	lerstand	l Rama	n Effect
	and Raman spec							
	CO301C.4 : un	derstand th	ne working o	of He-Ne l	Laser an	d Ruby	Laser.	
	<u>I</u>	COU	RSE SYLL	ABUS				
Unit No.	Content of Each Unit						Hou	rs of Each Unit
1	Atomic Spectra I: Review of Atomic Models: Rutherford's Model, Bohr's model, Sommerfeld's model, Stern-Gerlach experiment for electron spin. Revision of quantum numbers, exclusion principle, electronic configuration. Relativistic correction to energy levels of an atom, atom in a weak uniform external electric field – first and second order Stark effect.					15		

	2	15				
	3	15				
	4 (Brief Introduction). Lasers: Spontaneous and stimulated emission, Spatial and temporal Coherence, Einstein A and B coefficients, Optic Pumping, Population Inversion, Modes of resonator, O switching and Mode Locking, Ultra short pulse generation He-Ne Laser and Ruby Laser- Principle, Construction and working, Application of lasers in the field of medicine and Industry.		15			
		Text Books				
1.		hite, Introduction to Atomic Spectra, McGraw Hill, New York, 1				
2.		hn , Introduction to Atomic Spectra, Green and Co., Harlow, 2 nd				
3.		rajan and A.K. Ghatak, Lasers - Theory and Applications, Plen	num Press, New			
4.	 York, 1st Edition, 1981. 4. B. H.Bransden and C. J Joachain, Physics of Atoms and Molecules, Pearson, UK, 2nd 					
- .	Edition, 2003.					
5.		and R. Resnick, Quantum Physics of Atoms, Molecules, Sol	ids, Nuclei and			
	Particles, W	Viley, United States, 2 nd Edition, 2006.				
6.	Arthur Bei 2006.	iser, Perspectives of Modern Physics, McGraw Hill, New Yo	ork, 6 th Edition,			
7.	C. N. Bany Edition, 201	vell, Fundamentals of Molecular Spectroscopy, McGraw Hill, 17.	New York, 4 th			

NUCLEAR PHYSICS

Scheme Version:	Name of the subject: Nuclear and	L	Т	Р	C	Semester:	Contact Hours per Week:
2022-24	Particle Physics	3	1	0	4	III (2 nd Year)	3+1 Total Hours: 60=45+15
Subject Code: SBS PHY 01	Applicable to Programs:	Evaluatio n	CIE	30 Marks		nation Durati	ion: 3 hours
302 CC 3104	M.Sc. Physics	(Total Marks: 100)	TEE	70 Marks	Mather	uisite of Count natical Physic m Mechanics	
Course Description	This course will enable the M.Sc. students to understand the basic concepts of static properties of nuclei, radioactive decays, nuclear forces, nuclear reactions. They will also learn about the elementary particle physics.						
Course Objectives	Students will be exposed to General properties of nuclei Interactions among the nucleons Different models developed to explain the nuclear structure Elementary classification of particles and their properties						
Course Outcomes	After completion of this course, the students will be able to CO302C.1. Understand basic properties of nuclei CO302C.2. Understand interactions between nucleons, meson theory and spin dependence of nuclear forces CO302C.3. Get knowledge about Nuclear models, Magic numbers, and Collective nuclear model. Elementary knowledge about classification of particles. CO302C.4. Classify the particles and will be able to understand their properties.						
Unit No.			ESYLLA nt of Eac				Hours of Each Unit
1	Introductory Concept of Nuclei: Scattering and electromagnetic methods for determining the nuclear radius, Nuclear angular momentum, Nuclear magnetic dipole moment and Electric quadruple moment, Parity quantum number, Statistics of nuclear particles, Nuclear Disintegration: Simple theories of alpha, beta and gamma decay, Properties of neutrino, Non conservation of parity and Wu's experiment in beta decay, Electron capture, Internal conversion.					15	
2	Inter Nucleon Forces: Properties and simple theory of the deuteron ground state, Spin dependence and tensor component of nuclear forces, Nucleon-nucleon scattering at low energy, Charge-independence of nuclear forces, Many–nucleon systems and saturation of nuclear forces, Exchange					15	

	forces, Elements of meson theory.	
3	Nuclear Structure and Models: Fermi gas model, Experimental evidence for shell structure in nuclei, Basic assumption for shell model, Single- particle energy levels in central potential, Spin-orbit potential and prediction of magic numbers, Extreme single- particle model, Prediction of angular moment, Parities and magnetic moment of nuclear ground states, Liquid drop model, Semi-empirical mass formula, Nuclear fission, The unified model, rotational model.	15
4	 Nuclear Reactions: Types of nuclear reactions, conservation laws, energetic of nuclear reactions, cross-section, partial cross-section, compound nucleus, principle of detailed balance, Breit-Weigner formula, nuclear reaction mechanism, heavy ion reactions at low and intermediate energies. Particle Physics: Properties and origin, Elementary particles, Properties, classification, type of interactions and conservation laws, Properties of mesons, Resonance particles, Strange particles and Strangeness quantum number. 	15
	TEXT BOOKS	
1. Roy & Nig	am, Nuclear Physics, John Wiley & Sons, USA, 1 st Edition, 1967.	
) II Engo In	traduction to nuclear Dhysics Addison Wasley USA 1st Edition 1060	

2. H. Enge, Introduction to nuclear Physics, Addison Wesley, USA, 1st Edition 1969.

3. J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics, Springer, Germany, 1st Edition, 1969.

4. M.Leon, Particle Physics: An introduction, Elsevier, Netherlands, 1st Edition, 1973.

5. S. N. Ghoshal, Nuclear Physics, S. Chand, India, 1st Edition, 1994.

6. F.I. Stancu, Group Theory in Subnuclear Physics, Clarendon Press, UK, 1st Edition, 1997.

7. J.D. Walecka, Theoretical Nuclear and Subnuclear Physics, World Scientific, Singapore, 2nd Edition, 2004.

8. B. R. Martin and G. Shaw, Particle Physics, John Wiley & Sons, USA, 3rd Edition, 2008.

SOLID STATE PHYSICS

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						hours
	Solid State						per
	Physics						week: 3+1
2022-24						III (2 nd	3+1 Total
						Year)	Hours:
		3	1	0	4	i cui)	60=45+15
Subject Code:	Applicable	Evaluatio	CIE	30	Fyami	nation Duration	n • 3 hours
SBS PHY 01	to	n		Marks	L'Ann		511. 5 110015
303 CC 3104	Programs:	n		101units			
	C .	(Total	TEE	70		rerequisite of (
	M.Sc.	Marks:		Marks		duation Level S	
	Physics	100)			Physic	es and Quantum	n Mechanics
Course	The solid state	physics is the	branch of pl	ysics dealing	ng with	ohysical proper	ties ofsolids
Description	particularly cry	stals, includi	ng the behavi	or of electr	ons in th	ese solids. The	course solid
	state physics is	basically des	igned for fun	damental ur	nderstand	ding of severall	oreakthrough
	phenomena su	•		•		•	onding, free
	electrons theory	y, band theory	y and superco	onductivity	in solids		
	• To	understand th	e fundamenta	ls of intrigu	ing phen	omena such as	direct lattice,
~				-	• •	neat of metals, ba	
Course	in s	solids, effective	e mass, and su	perconductiv	vity.		
Objectives	• To	develop the so	cientific and p	ositive attitu	des in st	idents related to	the materials
		ence which is a	-		udes in students related to the materials		
	• To able the students for solve the problems related to solid state physics						
	At the end of the	nis course, the	e students wil	l be able to			
	CO303C.1. identify various crystal structures and their symmetries in solids						
Course							
Outcomes	CO303C.2. determine the crystal structure through X-ray diffraction, rotating crystal,						
	and	.1 1					Laue
	m	ethods					
	CO303C.3. ex	plain the theo	ories and phe	nomena of	lattice of	lynamics, vario	ous bonding,
	and						

	thermal properties (specifically specific heat) in solids						
	CO303C.4. calculate the specific heat and density of states of various solids						
	CO303C.5. interpret the electrical conductivity and resistivity, mean free path, relaxation time,						
	Fermi energy, electronic specific heat, and band format	ion in solids					
	CO303C.6. recognize the importance of effective mass, nearly free tight	-electron model and					
	binding approximation						
	CO303C.7. identify the basic differences between conductors and s	uperconductors					
	CO303C.8. illustrate the some exciting phenomena such as Meiss effect,	ner effect, Isotope					
	London's equations, BCS theory, and Josephson effect of superconductors						
	CO303C.9. understand the basics of high temperature superconductors and commercial applications of superconductors						
	COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit					
	Crystal Structure:						
1	Crystal Structures and Lattices with Basis, Miller Indices, Common Crystal Structures, Reciprocal Lattice, Brillouin Zones, X-ray Diffraction by a Crystal and Their Equivalence, Laue Equations, Ewald Construction, Brillouin Interpretation, Intensity of X-ray Reflections: Atomic Scattering Factor; Geometrical Structure Factor, Structure Factors, Structure Factor; ExperimentalMethods of Structure Analysis: Laue's Method; Rotating Crystal Method; Powder Method, Diffraction from Non-Crystalline Systems.	15					
	Lattice Dynamics, Crystal Binding and Thermal Properties:						
2	Classical Theory of Lattice Dynamics: Vibrations of Crystals with Monatomic Basis and Two Atomic Basis; Dispersion Relation; Group Velocity; Acoustical and Optical modes, Bonding in Solids, Elastic Constants and Properties, Phonons: Quantization of Lattice Vibration; Phonon Momentum; Inelastic Scattering of Neutrons by	15					

	Phonons, Thermal Properties: Heat Capacity; Density of States;	
	Normal Modes; Debye and Einstein Models.	
3	Free Electrons and Energy Band in Solids: Free Electron Gas Model and Its Limitations, Electrons Moving in One and Three Dimensional Potential Well, The Density of States, Fermi Energy, Effect of Temperature on Fermi Distribution Function, The Electronic Specific Heat, The Electrical Conductivity of Metals, Relaxation Time and Mean Free Path, The Electrical Resistivity, Band Theory: Bloch Theorem; The Kronig- Penny Model; Symmetry Properties of the Energy Function; Effective Mass of an Electron; The Nearly Free Electron Model and Tight Binding Approximation; Metals; Insulators and Semiconductors.	15
4	Superconductivity: Introduction to Superconductivity, Effect of Magnetic Field, The Meissner Effect, Type I and Type II Superconductors, Entropy, Free Energy, Heat Capacity, Energy gap, Isotope Effect, Thermodynamics of the Superconducting Transition, London Equation and Penetration Depth, Coherence Length, BCS Theory of Superconductivity, Cooper Pair, Flux Quantization, DC and AC Josephson Effects: SQUIDs, High Temperature Superconductivity, Applications of Superconductors.	15
	TEXT BOOKS	
 J. F. An 2004. J. P. Sri H. Ibacl Germany M. A. V Edition, C. Kitte N. W. 4 Edition, 	I, Introduction to Solid State Physics, John Wiley and Sons, USA, 8 th Edition, Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Wi	Press, UK, 1 st Edition, 2006. ent, Springer, ublications, India, 2 nd 2012.

LABORATORY-III

pplicable to rograms: 1.Sc. Physics im of Lab III is uclear physics,	0 Evaluatio n (Total Marks: 100)	0 CIE TEE	12 30 Marks 70 Marks		III (2 nd Year) nation Duration			
im of Lab III is	n (Total Marks: 100)		Marks 70					
im of Lab III is	n (Total Marks: 100)		Marks 70					
1.Sc. Physics	(Total Marks: 100)		70	Prerequ	uisite of Cours	a: Nona		
im of Lab III is	Marks: 100)	TEE		Prerequ	uisite of Cours	a: Nono		
	s to train stude					e. None		
		ents for ac	lvanced pr	actical re	lated to solid st	ate physics,		
	electronics, nu		-					
Each student is required to perform at least five experiments from Section A and at least three experiments from any one of the optional subtopics of Section B: (i) Electronics (ii) Thin Film and Nano-Material (iii) Numerical Techniques; depending upon the courses opted under discipline centric elective course								
			-					
-	-				chniques			
fter completion	of this course	e, the stuc	lents will l	be able to				
 After completion of this course, the students will be able to CO304C.1. Apart from some experiments based on nuclear physics, electronics, computation and solid state physics. CO304C.2. To understand the basic synthesis and characterization techniques for different materials such as thin films and nanoparticles. CO304C.3. students will also perform the advance experiments like DTA, TGA, UV-VIS, Microwave furnace and thin film coating techniques. 								
 To train students on advanced experiments To give training on advance instruments To introduce students to latest numerical techniques After completion of this course, the students will be able to CO304C.1. Apart from some experiments based on nuclear physics, electronics, computation and solid state physics. CO304C.2. To understand the basic synthesis and characterization techniques for different materials such as thin films and nanoparticles. 								

	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	1. Kerr Effect 2. Curie Temperature 3. B-H curve 4. Dielectric constant 5. Solid State Nuclear Track Detector (SSNTD) 6. G.M. Counters: characteristics, dead time and counting statistics 7. Scintillation detector-energy calibration, resolution and determination of gamma ray energy 8. Quinks tube method to find susceptibility of a material 9. Nuclear Magnetic Resonance 10. Zeeman Effect 11. To study Lattice Dynamics	100
2	 (i) Electronics PCM/delta modulation and demodulation Fiber optic communication Modulation/Demodulation 4-bit ripple counter (ii) Thin Film and Nano-Material Data Analysis of XRD, SEM and TEM Chemical Deposition (for CNT growth) ZnO wire by thermal oxidation Band gap estimation by Tauc-plot method Thin film deposition technique DTA/TGA analysis (iii) Numerical Techniques Solution of Linear algebraic equation: Gauss Jordon elimination, Singular Value Decomposition, Sparse linear system. Evaluation of Functions: special functions, evaluation of functions by path integration, incomplete gamma, beta function. Random Numbers: Uniform random numbers generators, statistical distributions and their properties, Rejection Methods, transformation method, simple Monte Carlo integration, Adaptive and recursive Monte Carlo methods, Test of randomness. Signal Processing: FFT, IFFT, Filtering with FFT, convolution and correlation functions, application to real time series data. 	80

5. Eigen systems: Solving eigenvalues and finding eigen functions	
of Schrodinger equation for analytically unsolvable potentials	l
using variational principle.	l
	i i

TEXT BOOKS

1. Albert Malvino, Digital Principles and Applications, McGraw Hill, New York, 4th Edition, 1986.

2. A. C. Melissinos, J. Napolitano, Experiments in Modern Physics, Academic Press, Cambridge, Massachusetts, 2nd Edition, 2003.

3.**W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,** Numerical Recipes in C/C++: The Art of Scientific Computing, Cambridge University Press, 3rd Edition, 2007.

4. J. P. Sethna, Statistical Mechanics: Entropy, Order Parameters, and Complexity, Oxford University Press, 2nd Edition, 2007.

5. E. Balagurusamy, Numerical Methods, Tata McGraw Hill, New Delhi, 1st Edition, 2017.

SEMINAR PRESENTATION

Scheme Version:	Name of the subject:		L	Т	Р	C	Semester:	Contact Hours per Week: 02	
2022-24	SEMINAR PRESENTATIO N		0	2	0	2	II (2 nd Year)	Total Hours: 30	
Subject Code: SBS PHY 01 305 CC 2002	Applicable to Programs:		Evalu ation	CIE	15	Exam Minute	nation Duration: 20		
	M.Sc. Physics		(Total Marks : 50)	TEE	35 Marks	Preree	Prerequisite of Course: Non		
Course Description	of curre	nt interes	st. A depa				elective paper ibute the topic		
Course Objectives		• To ma	ike studen	t capable of i	independer	t thinkin	terature survey g g out research		
Course Outcomes	CO305.1 CO305.2 CO305.3	After completion of this project, students will be able to learn about: CO305.1. Basic of literature review CO305.2. Techniques used for performing research CO305.3. Analyze the results and tabulate them in a proper manner CO305.4. How to write and dissertation, making presentation and viva etc.							

Evaluation: The evaluation will be done internal committee constituted by Head of the Department. Internal marks will be given by the mentor allotted to each candidate.

Research and Publication Ethics

Scheme Version:	Name of the subject: Research and		L	Т	Р	C	Semester:	Contact Hours per Week: 2
2022-24	Publication Ethics		2	0	0	2	III (2 nd Year)	Total Hours: 30
Subject Code: SBS PHY 01 306 CC 2002	Applicable to Programs: M.Sc. Physics		Evalu ation (Total	СІЕ	15 Marks	Hours	ination Dur	
		Marks : 50)	TEE	35 Marks				
Description Course Objectives		oublications To train	student	for research ts aware of II				esearch and how
Course Outcomes		 completion of the course, the student should be able to: cO306D.1: Understand the basic ethics of research. cO306D.2: Maintain the research integrity and intellectual honesty. cO306D.3: Understand the scientific misconduct and proper citations. cO306D.4: Acquire knowledge of databases and software's. 					-	
			COL	JRSE SYLL	ABUS			
Unit No.			Conte	ent of Each U	J nit		H	Iours of Each Unit
1	Theory: RPE 01: I	Philosophy	and Eth	iics (3 hrs.)				15

	1. Introduction to philosophy: definition, concept, branches,	
	nature and scope,	
	2. Ethics: definition, moral philosophy, nature of moral	
	judgements and reactions	
RI	PE 02: Scientific Conduct (5 hrs.)	
	1. Ethics with respect to science and research	
	2. Intellectual honesty and research integrity	
	3. Scientific misconducts: Falsification, Fabrication, and	
	Plagiarism (FFP)	
	4. Redundant publications: duplicate and overlapping	
	publications, salami slicing	
	5. Selective reporting and misrepresentation of data	
RI	PE 03: Publication Ethics (7 hrs.)	
	1. Publication ethics: definition, introduction and importance	
	2. Best practices/standards setting initiatives and guidance:	
	COPE, WAME, etc.	
	3. Conflicts of interest	
	4. Publication misconduct: definition, concept, problems that	
	lead to unethical behavior and vice versa, types	
	5. Violation of publication ethics, authorship and	
	contribution-ship	
	6. Identification of publication misconduct, complaints and	
	appeals	
	7. Predatory publishers and journals	
	actice:	
RI	PE 04: Open Access Publishing (4 hrs.)	
	1. Open access publications and initiatives	
	2. SHERPA/RoMEO online resource to check publisher	
	copyright & self-archiving polices	
	3. Software tool to identify predatory publications developed	
	by SPPU	
	4. Journal finder / journal suggestion tools viz. JANE,	17
2	Elsevier Journal Finder, Springer Journal Suggester, etc.	15
	PE 05: Publication Misconduct (4 hrs.)	
A.	Group Discussion (2 hrs.)	
	1. Subject specific ethical issues, FFP, authorship	
	2. Conflicts of interest	
	3. Complaints and appeals: examples and fraud from India	
	and abroad	

 B. Software tools (2 hrs.) 1. Use of plagiarism software like Turnitin, Urkund and other open source software tools RPE 06: Databases and Research Metrics (7 hrs.) A. Databases (4 hrs.) 					
 Indexing databases Research Metrics Citation databases: Web of Science, Scopus, etc. <i>B. Research Metrics (3 hrs.)</i> Impact Factor of journal as per Journal Citation Report, SNIP, SJR, IIP, Cite Score Metrics: h index, g index, i10 index, almetrics 					
TEXT BOOKS					
ernance, 2019, ISBN:978-81-939482-1-7. http://www.insaindia.res.in/pdf/Ethics_Book.pdf					
Chaddah, P., Ethics in Competitive Research: Do not get scooped; do not get plagiarized 2018, ISBN:978-9387480865. Beall, J. Predatory publishers are corrupting open access, Nature, 489 (7415), 179-179, 2012. https://doi.org/10.1038/489179a					
ik, D. B., What is ethics in research and why is it important, National Institute of ronmental Health Sciences, 1-10. Retrived from ://www.neihs.nih.gov/research/resources/bioethics/whatis/index.cfm					
onal Academy of Sciences, National Academy of Engineering and Institute of Medicine, On g a Scientist: A Guide to Responsible Conduct in Research: 3 rd edition, National Academics 2009. Bird, A., Philosophy of Science, Routledge 2006. Intyre, A., A Short History of Ethics, London 1967.					

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester:	Contact hours per		
							week: 3+1		
2022-24	Physics of Electronic Material and Devices	3	1	0	4	II (2 nd Year)	Total Hours: 60=45+15		
Subject Cod	e: Applicable to	Evalu		30	Evam	ination Durati	on• 3 hours		
SBS PHY 01 301 DCEC	Programs: M.Sc. Physics	ation	CIE	Marks	L'Ann		on. 5 nours		
3104		(Total Marks : 100)	TEE	70 Marks	Preree	Prerequisite of Course: None			
Course Description	This course intends to provide knowledge about band structure and electronic properties of semiconducting materials. In addition, this course aims to provide a detailed theory and design of electronic, microwave and photonics devices.								
Course Objective	·		amental know and their appl	•	expose t	o the field of se	emiconductor		
Course Outcomes	On completion of	the course	, student wou	ıld be able:					
	CO301D.1. To de electronics	escribe the	e properties	of material	s and ap	plication of se	emiconductor		
	CO301D.2. To u carriers	nderstand	the oncepts	of recom	oination	and generation	ns of charge		
	CO301D.3. To un	derstand b	asic properti	es of Metal	-Semico	nductor junctio	n.		
	CO301D.4. To understand the working, design and applications of various semiconducting devices like rectifiers, clippers, LED, Solar cells.								
		COL	JRSE SYLL	ABUS					
Unit No.		C	content of Ea	ich Unit			Hou rs		

Physics of Electronic Material and Devices

		of Eac Unit
	Fundamentals of Semiconductors:	
1	Carrier concentration of semiconductor, Transport Equations, Fundamentals of Compound Semiconductors: Introduction of Compound Semiconductors, Properties of Compound semiconductors, Synthesis of Compound Semiconductors. Crystal structures of Elemental and III-IV	1
2	Carrier mobility in semiconductors: Electron and Hole conductivity in semiconductors, Shallow impurities in semiconductors (Ionization Energies), Deep Impurity states in semiconductors, Carrier Trapping and recombination/generation in semiconductors, Shockley read theory of recombination, Switching in electronic devices.	1
	Metal-semiconductor, Metal-Insulator-Semiconductor and MOS devices:	
3	Native oxides of Compound semiconductors for MOS devices and the interface state density related issues. Metal semiconductor contacts, Schottky barrier diode, Metal semiconductor Field Effect Transistors (MESFETs): Pinch off voltage and	1
	threshold voltage of MESFETs. D.C. characteristics and analysis of drain current. Velocity overshoot effects and the related advantages of GaAs, InP and GaN based devices for high speed operation. Sub threshold characteristics, short channel effects and the performance of scaled down devices.	
4	High Frequency Devices:Essential Condition of High frequency device and compound semiconductor, Tunnel diode,MIS Tunnel diode, Degenerate and Non-degenerate semiconductor, MIS switch diode,MIM Tunnel diode. IMPATT diode. Characteristics, breakdown Voltage, AvalancheRegion and Drift Region, Transferred electron devices.Photonic devices: LED and LASER, Photo detectors, Solar-cells.	1
	TEXT BOOKS	
1.	A.S. Grove, Physics and Technology of Semiconductor Devices, WILEY, United State	es, 1st
2	Edition, 1967. B.L. Sharma, Metal , Semiconductor Schottky Barrier Junction and their Applications,	Springer
2.	USA, 1st Edition, 1984.	Springe
3.	E. H.Rhoderick, Metal/Semicond uctor Contacts, Clarendon Press, UK, 1st Edition, 1	
4.	Jasprit Singh , Semiconductor Devices Basic Principles, John Wiley & Sons, United St Edition, 2000.	ates, 1st
	S.M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, United States, 2nd E	Edition,

Nuclear Reactor Physics

Scheme	Name of the subject:	L	Т	Р	C	Semester:	Contact		
Version :	Nuclear Reactor Physics						hours per week: 3+1		
2022-24		3	1	0	4	III (2 nd Year)	Total Hours: 60=45+15		
Subject	Applicable to	Evalu		30	Exami	nation Durati	on:3 hours		
Code: SBS	Programs: M.Sc. Physics	ation	CIE	Marks					
PHY 01 302 DCEC 3104		(Total Marks : 100)	TEE	70 Marks	Prerec	rerequisite of Course: None			
Course Descrip tion	This course is intended to impart primary but wide theoretical knowledge about nuclear reactor and related topics.								
Course	To understand	l the theore	tical and expe	rimental kno	wledge a	bout nuclear read	ctors.		
Objecti	• To know abou	it the basic	designs of nuc	clear reactor	s.				
ves	• To understand	l the need of	of nuclear fuel	and waste m	anageme	nt.			
	After completion of this	course, stu	udents would	be able to:					
Course	CO302D.1. Understand	the nuclea	r fission reac	tions.					
Outcom	CO302D.2. Learn about	neutron s	ources and m	oderators.					
63	CO302D.3. Get knowled	lge about	working of n	uclear react	ors.				
	CO302D.4. Get knowled	lge about	different type	s of power	reactors				
	CO302D.5. Learn how to	o manage	the nuclear f	uel and was	ste.				
		COL	JRSE SYLL	ABUS					

Unit No.	Content of Each Unit	Hours of Each Unit
1	Nuclear Reactions: Characteristics of atomic nucleus, Binding energy, Nuclear fission, Cross section, Interaction of neutrons with nuclei.	15
2	Neutron moderation:Inelastic scattering, Elastic collisions, Moderating ratio, Slowing downDensity, Resonance escape, Moderators, Neutron sources, Prompt neutrons,Fast fission, Fission energy, Thermal utilization, Fission products, Chainreaction, Multiplication factor, Leakage of neutrons, Critical size, Diffusionand slowing down theory, Homogenous and heterogeneous reactors.	15
3	Nuclear Reactors:Fuel materials, Moderator materials, Cladding materials, Coolant materials and control materials, Control requirement calculations, Means of control, Reactor kinematics: Neutron lifetime, Generation time, Point kinetic equation and solution of the equations for step input reactivity.	15
4	Types of Power reactors & Fuel and waste management:Boiling water reactors, Pressurized water reactors, Pressurized heavy waterreactors, Light water cooled graphite moderated reactors, Gas cooled reactors,Advanced gas cooled reactors, High temperature gas cooled reactors andliquid metal cooled reactors and Fast breeder reactors, Fuel managementschemes, Fuel composition, Fuel cycle cost and wastemanagement.	15
	fission reactor sites and related case studies for generation of nuclear energy.	I
	TEXT BOOKS 1. Lamarshs, J.R., Introduction to Nuclear Reactor Theory, Addison-Wesley Publishing Co	., 1966.
	 Glasstons, Sammuel and Sesonske, Alexander, Nuclear reactor Engineer, CBS Publisher Distributors, 1986. 	rs &

PLASMA PHYSICS AND FUSION REACTOR

Scheme	Name of the	L	Т	Р	C	Semester:	Contact
Version:	subject:						hours per
	Plasma						week: 3+1
	Physics and Fusion Reactor					-	Total
2022-24	Fusion Reactor					Hours:	
		3	1	0	4	III (2 nd Year)	60=45+15
						1 car)	
Subject Code:	Applicable to	Evaluatio		30	Fyamir	 nation Durati	on• 3 hours
SBS PHY 01	Programs:	n		Marks	Laum		5 110 115
303 DCEC 3104	i ogranise		CIE				
	M.Sc. Physics	(Total		70	Dronog	uisite of Cour	
		Marks:		70 Marks	-	natical Physics	
		100)	TEE			m Mechanics	unu
Course	Students will be	exposed to the	eory relat	ed to moti	on of cha	urge particle in	L
Description	Students will be exposed to theory related to motion of charge particle in inhomogeneous field, production of plasma and usage of plasma.						
Course	• To r	nake student	s familia	r with for	urth state	e of matter	
Objectives	• To a	ware studen	ts about	plasma ci	reation in	n laboratory	
				-		of energy i	n fusion
	reac			1			
	After completion	n of this course	e, the stud	lents will	have und	erstanding of	
Course	CO202D 1	4 ana 41 a anati a	o 1	1 4 0 0 4 1 1 1 1	the chore		
Outcomes	CO303D.1. wha CO303D.2 Idea			•	Ũ	e particle moti	on
	CO303D.2 Idea CO303D.3. how		-				
	CO303D.4. how	0 1			•	on reactors	
	I	COURS		_			
Unit No.		Conte	nt of Eac	h Unit			Hours of
	Content of Each Unit						Each Unit
1	Introduction:						15

	Diserve state releanse normations anglighting of plasmas				
	Plasma state, plasma parameters, applications of plasmas. Single particle orbit theory: Drift of charge particle under different combinations of electric and magnetic field, crossed electric and magnetic fields, homogenous electric and magnetic fields, spatially and time varying electric and magnetic fields,				
	The Boltzmann Equation:				
2	Simplified magneto-hydrodynamic equations - Electron plasma oscillations Debye shielding phenomenon and criteria for plasma, motion of charged particles in electromagnetic field, Electric field drift, parallel acceleration, curvature drift, adiabatic invariants; fundamental equations of magneto-hydrodynamics(MHD), magnetic confinement.	15			
	Production of Plasma in laboratory:				
3	 Physics of glow discharge, electron emission, ionization breakdown of gases, Paschen's law and different regimes of E/ρ in a discharge. Plasma diagnostic: Probes, energy analysers, magnetic probes and optical diagnostics, preliminary concepts. 	15			
	Fusion Reactor:				
4	Potential of fusion energy, controlled thermonuclear reactions, fusion reactions, fusion cross-sections, fusion power generation, energy balance for fusion systems, ignition criterion, gain factor, plasma heating, ohmic heating, neutral beam injection, radio frequency heating, inertial confinement fusion, tokamaks, stability, operating limits and transport.	15			
	TEXT BOOKS				
1. Nicholsor	n, D. R., Introduction to Plasma theory, Wiley, 1983				
2. Chen, F.F	., Introduction to Plasma Physics, Springer, 1984				
3. Sturrock,	P.A., Plasma Astrophysics, Cambridge University Press, 1994				
4. Choudhuri, A.R., The Physics of Fluids and Plasmas, Cambridge University Press, 1998					

PHYSICS OF NANOMATERIALS

Scheme	Name of the Subject:	L	Т	P	С	Semester	Contact	
Version:	Physics of Nanomaterials					:	hours per week: 3+1	
2022-24		3	1	0	4	III(2 nd Yea r)	Total Hours: 60=45+15	
Subject Code:	Applicable to Programs: M.Sc. Physics	Evaluation (Total	CIE	30 Marks	Exa hou	mination Duration: 3 rs		
SBS PHY 01 304 DCEC 3104		Marks): 100	TEE	70 Marks	Pre-requisite of course: Solid State Physics			
Course Description	To introduce knowledge on basics of nanoscience and the fundamental concepts behind size reduction in various physical properties. More specifically, the student will be able to understand the different properties of materials being used in various length scales.							
Course Objectives	 The objective of this course is to provide the knowledge on the Physics of nanostructure materials, materials growth aspects important for size control and size selection and application of nanoscale materials. The course lays foundation for advanced courses in engineering aspects of materials and their applications. 							
Course Outcomes:	On completion of this course, student will learn: CO304.1 Correlate properties of nanostructures with their size, shape and surface characteristics.							
	CO304.2 Qualitatively describe how the nanoparticle size can affect the morphology, crystal structure, reactivity, and mechanical properties.CO304.3 Understand the effects of quantum confinement on the electronic structure and							
	corresponding physical and chemical properties of materials at nanoscale. CO304.4 Describe several synthesis methods for fabrication of inorganic nanoparticles, one- dimensional nanostructures (nanotubes, nanorods, nanowires), thin films, nonporous materials, and nanostructured bulk materials, and also could describe how different lithography methods							
	can be used for making nanostructures. CO304.5 Understand some specific materials like graphene and carbon nanotubes for various							

	applications.	
	CO304.6 To comprehend basic knowledge on the characterization of nanomateria different methods.	ls by
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1.	Introduction to Nanostructure Materials:	15
	Nanoscience & nanotechnology, size dependence of properties, Chemical- reactivity, Mechanical properties at nanoscale, Moor's law, Surface energy and Melting point (quasi melting) of nanoparticles, Excitons, Density of states, Variation of density of states with energy and size of crystal. Population of conduction and valance band for 0D, 1D, 2D & 3D material.	
2.	Quantum Size Effect:	15
	Quantum confinement and its consequences, quantum wells, quantum wires and quantum dots and artificial atoms. Electronic structure from bulk to quantum dot. Electron states in direct and indirect gap semiconductors nanocrystals. Confinement in disordered and amorphous systems.	
3.	Synthesis of Nanomaterials:	15
	Key issue in the synthesis of Nanomaterials, Different approaches of synthesis, Top down and Bottom up approaches, Thermal and e-beam evaporation, Gas phase synthesis of nanopowders, chemical and colloidal methods, sol gel method, functionalization of nanoparticles. Ball Milling, Specific materials like graphene and carbon nanotubes (CNTs).	
4.	Characterization techniques:	15
	XRD (Scherrer's formula), Electron Microscopy: Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Scanning Probe Microscopy (SPM), Atomic Force Microscopy (AFM), Raman Spectroscopy and XPS, Estimation of band gap using UV-Vis-NIR spectroscopy, Thermogravimetric analysis.	
	REFERENCE BOOKS	

- D. Bimberg, M. Grundmann, N.N. Ledenstov, Quantum Dot Hetrostructures, John Wiley & Sons, United States, 1st Edition, 1999.
- 2. Charles P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology, John Wiley & Sons, United States, 1st Edition, 2003.
- 3. Guozhong Cao, Nanostructures & Nanomaterials, Synthesis, Properties & Applications, Imperial College Press, UK, 1st Edition, 2004
- 4. Liming Dai, Carbon Nanotechnology, Elsevier, Netherland, 1st Edition, 2006.
- 5. Michael J. O'Connell, Carbon Nanotubes: Properties and Applications, CRC Press, USA, 1st Edition, 2006.
- 6. T. Pradeep, Nano: The Essentials, McGraw Hill Companies, New York, 1st Edition, 2007.
- 7. Hornyak G.L., Tibbals H.F., Dutta J., Moore J.J., Introduction to Nanoscience and Nanotechnology, CRC Press, USA, 1st Edition, 2008.

General Theory of Relativity

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester:	Contact Hours	
	General						per	
2022-24	Theory of					III(^{2nd}	Week: 4	
	Relativity	3	1	0	4	Year)	Total Hours: 60=45+15	
Subject	Applicable to	Evalu		30		ination Dura	tion: 3	
Code: SBS	Programs:	ation	CIE	Marks	Hours			
PHY 01 305	M.Sc. Physics	(Total		70		equisite: Cla	ssical	
DCEC 3104		Mark	TEE	Marks	Electrodynamics,			
		s: 100)			Mathematical Methods in Physics I & II			
Course	Aim of the cours		amiliariza c	tudents w			of theory of	
Description		50 15 10 1		iuuciits w		for aspects (of theory of	
Description	gravitation.							
Course	The student will come to understand							
Objectives	. Special Theory of Relativity							
Jeentes	. General	Theory c	of Relativity					
	. Few applications of Geeral Theory of Relativity.							
	On completion of the course, student would be able to							
Course	CO305D.1 : understand the mathematical rigour that goes behind the theory of							
Outcomes	relativity and also be able to							
	CO305D.2 : Understand few applications of general theory of relativity.							
	CO305D.3 : Understand the Special theory of relativity CO305D.4 : Understand the origin of gravitational waves							
	CO303D.4 . One		RSE SYLL			63		
Unit No.			nt of Each			Hou	rs of Each	
		conte		e me		1100	Unit	
	Historical Back	ground:						
	Review of Newtonian Mechanics. Special theory of							
1	1relativity. Prelude to General relativity, historical15developments, 4-Vectors and 4-tensors, examples from15						15	
	physics							
	Tensors in GTR:							
2	Principle of Equivalence, Equations of motion, Gravitational						15	
2	2 force, Tensor Analysis in Riemannian space, Effects of Gravitation, Riemann-Christoffel curvature tensor, Ricci					15		
	Tensor, Curvatur			ature tens		1		
	Applications of							
3	Einstein Field E		, Experime	ntal tests	of Ge	neral	15	

	Theory of Relativity, Scwartzchild Solution, Gravitational lensing	
	Gravitational Radiation:	
4	Gravitational waves: generation and detection, Energy, momentum and angular momentum in Gravitation	15
		1

Text Books

1. S. Weinberg, Cosmology, Oxford University, 1 st Edition, 2008.

2. **Ray D'Inverno**, Introducing Einstein's General Relativity, Oxford University, 1 st Edition, 1992.

3. M. Berry, Principle of Cosmology and Gravitation, Taylor & Francis; 1 st Edition, 1989.

4. **Tai L. Chow**, Introduction to General theory of Relativity and Cosmology, Springer, 1 st Edition, 2008.

5. P.A.M. Dirac, General theory of Relativity, Wiley-Blackwell, 1 st Edition, 1975.

6. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Publishere, Shroff, 2 nd Edition, 2010

Astrophysics of Stars

Scheme Version:	Name of the subject:	L	Τ	Р	C	Semester:	Contact Hours	
2022-24	Astrophysics of Stars					III(^{2nd}	per Week: 4	
	UI Stars	3	1	0	4	Year)	Total Hours: 60=45+15	
Subject	Applicable to	Evalu	CIE	30 Marka		ination Dura	ition: 3	
Code: SBS PHY 01 306	Programs: M.Sc. Physics	ation (Total	CIE	Marks 70	Hours			
DCEC 3104	WI.Se. T Hysics	Mark	TEE	Marks	Prerequisite: Introduction to Astronomy and Astrophysics			
		s: 100)						
Course	Aim of the Cours	e : Stars	are the fund	amental bu	ilding b	locks of the U	Jniverse. By	
Description	injecting vast amounts of energy and momentum into their surround-ings, they act as drivers for the evolution of their host galaxies							
Course	Aim of th	is course	e is to under	stand in de	etail wh	at goes on de	ep inside an	
Objectives	object that, to us, is a mere pinprick of light in the sky.							
Course Outcomes	On completion of the course, student would be able to CO306D.1 : quantify the basic parameters of stars. CO306D.2 : understand how radiation interacts with matter at the surfaces of stars CO306D.3 : Understand how to produce the spectra that we observe							
	CO306D.4 : know about the processes that determine the interior structure, composition and evolution of stars.							
	rr and		RSE SYLL	ABUS				
Unit No.	Content of Each Unit					Hou	rs of Each Unit	
1	Stellar Observations : Introduction, Distance & magnitude, Blackbody radiation, Colors & line spectra, Binary systems : visual binaries, Eclipsing & spectroscopic binaries, The Hertzsprung-Russel diagram, Spectral classification					15		
2	Stellar Atmospheres :Stellar atmospheres, Describing radiation, Radiation &matter, Radiative transfer, The Eddington approximation, The greyatmosphere, Realistic model atmospheres, Opacity sources,Spectral features, Profile shapes, Line strengths			e grey	15			

3	15						
	rates, Rotation, Stellar model building Stellar Evolution :						
4	The main sequence, The Sun, Massive stars, Star formation, Pre-main-sequence evolution, Evolution off the main sequence, Helium burning & beyond, Stellar death, Stellar	15					
	pulsation, White dwarfs, Neutron stars Text Books						
1 "An Introdu	ction to Modern Stellar Astrophysics",						
	roll and Dale A Ostlie (ISBN: 978-08053034830), Cambridge U	University Press					
2. "Stellar Stru	acture and Evolution", R. Kippenhahn & A. Weiger, (2012) Sprin	nger-Verlag					
Berlin Heidelb	erg						
	3. Structure and Evolution of the Stars, by M. Schwarzschild. (ISBN : 9780691652832), 2016,						
Princton Unive	•						
	ospheres, by Ivan Hubeny, Springer Verlag						
5. Radiative P Verlag GmbH	rocesses in Astrophysics : G. Rybiki and A. Lightmann, 2004 I & Co.	WILEY-VCH					

Characterization Techniques for Materials

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						hours per
							week: 3+1
	Characterization						
2022-24	Techniques for Materials						Total
	Waterfals	3	1	0	4	I (1 st Year)	Hours: 60=45+15
							00-43+13
Subject Code:	Applicable to	Evalu		30	Exami	nation Duration	on: 3 hours
SBS PHY 01	Programs:	ation	CHE	Marks			
307 DCEC	M.Sc. Physics	(Total	CIE				
3104		Marks		70	Prerec	uisite of Cour	se: None
		: 100)		Marks		-	
		• 100)	TEE				
Course	This course covers the fundamental principles and practical applications of different						
Description	classes of mate		-	zation tec	-		
-	characterization te	chniques	used for ch	emical and	l structu	ıral analysis o	f materials,
	including metals,	ceramics,	polymers, c	composites,	and se	miconductors.	The topics
	include important	spectroso	copic, micro	scopic and	therma	al methods fo	or materials
	characterization.						
Course	• To introdu	ce the ma	terials charac	terization to	echnique	es to the student	te la
Objective			terrars charac		connique	is to the student	10
	• Help the st	tudents to	understand th	ne instrume	ntation a	spects	
	T 1	1 / 1	1 1 / 1	6.1.4	. , ,		
	• To provide	e a detaile	d understandi	ng of data i	interpret	ation	
	• To provide	e hands on	n experience of	of the chara	cterizati	on techniques	
			-			Å	
Course	On completion of	the course	, student wou	ld be able:			
Outcomes	СО307D.1. То) determir	ne crystal stri	icture of si	necimen	and estimate i	ts crystallite
	size and stress		jour our				erjstunite
				-	y techni	ques to investig	gate
	microstructure of r	naterials a	at high resolut	tion			
	CO307D.3. To use appropriate spectroscopic technique to measure vibrational/electronic						nal/electronic
	transitions to estimate parameters like energy band gap, elemental concentration, etc.						
					•		
	СО307D.4. То	o apply th	ermal analys	is techniqu	es to det	termine therma	I stability of

	and thermodynamic transitions of the specimen.	
	COURSE SYLLABUS	
Unit No.	Content of Each Unit	Hours of Each Unit
1	Structure analysis X-ray diffraction. Diffraction under non-ideal conditions. Atomic scattering and Geometrical structure factors. Factors influencing the intensities of diffracted beams. Phase identification, indexing and lattice parameter determination, Powder X-ray diffractometer. Applications of XRD in bulk and nano-materials.	15
2	Microscopy techniques: Introduction to Microscopes, Optical microscopy, Transmission Electron Microscopy (TEM); Basic Electron scattering, Concepts of resolution, TEM instruments, Various imaging modes, Analysis of micrographs, Electron Energy Loss Spectroscopy, Scanning Electron Microscopy (SEM), Scanning Probe Microscopy (AFM and STM)	15
3	Spectrophotometric analysis of materialsUV-VIS spectroscopy, Fourier transform infrared spectroscopy, Ramanspectroscopy, X- ray photoelectronSpectroscopy (XPS).	15
4	 Thermal analysis techniques: Differential thermal analysis (DTA), Differential Scanning Calorimetry (DSC), Thermo-gravimetric analysis (TGA), Electrical characterization techniques: Electrical resistivity in bulk and thin films, Hall effect, Magnetoresistance 	15
	TEXT BOOKS	<u> </u>
2. W	endlandt, W.W., Thermal Analysis, John Wiley & Sons, 1986. achtman, J.B., Kalman, Z.H., Characterization of Materials, Butterworth Heinemann urphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imaging,	, 1993.

Wiley-Liss, Inc. USA, 2000.

- 4. Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-Hall, 2001.
- **5. B. Raj, T. Jayakumar, M. Thavasimuthu**, Practical Non-Destructive Testing, 2nd ed., Narosa Publishing House, 2002.
- 6. D. A. Skoog, F.J. Holler, S. R. Crouch, Instrumental Analysis, Cengage Learning, 2007.
- 7. Li Lin, Ashok Kumar, Materials Characterization Techniques Sam Zhang; CRC Press, 2008.
- **8.** Y. Leng, Materials Characterisation: Introduction to Microscopic and Spectroscopic Methods, John Wiley & Sons (Asia), 2008.
- **9.** J. C. Vickerman, I. Gilmore, Surface Analysis: The Principal Techniques, 2 nd ed., John Wiley & Sons, Inc.2009.

Digital Electronics and Microprocessor

Scheme Version :	Name of the subject: Digital Electronics and Microprocessor	L	Т	Р	C	Semester:	Contact hours per week: 3+1
2022-24		3	0	2	4	III (2 nd Year)	Total Hours: 60=45+15
Subject Code: SBS	Applicable to Programs:M.Sc. Physics	Evalu ation	CIE	30 Marks	Exami	nation Duratio	on:3 hours
PHY 01 308 DCEC 3024		(Total Marks : 100)	TEE	70 Marks	Prerequisite of Course: Physics of Semiconductor Devices, Analog Electronics		
Course Descrip tion	This course is intended to application of microproc		M.Sc studen	ts for digit	al system	ns, their implem	nentation and
Course Objecti ves	• To make fami	liar with va	mentals of dig arious logic fa 1 of microproc	milies and th	neir imple	mentation in log cations.	ic circuits.
Course Outcom es	Outcom CO308D.1. The basics of digital systems and Boolean algebra.						
	COURSE SYLLABUS						
Unit No.		Cor	ntent of Eacl	n Unit			Hours of Each

		Unit
1	Digital Systems: Digital signals, binary number system, conversions, Boolean algebra, logic gates, standard gate assemblies, implementing circuits from boolean expressions, SOP, POS, Simplifying logic circuits: algebraic method, K-mapping, Error detection: Parity method, checksum method.	15
2	Digital Circuits : Combinational Circuits: Half Adder, Full Adder, Decoder, Encoder, Multiplexer, Demultiplexer and their applications. Sequential Circuits: Flip flops; SR, T, D and J- K, Shift Register, Parallel and Serial data transfer, Timming Waveforms. Counters: Synchronous and Asynchronous Up, Down, and Bidirectional Counters, Timing Wave forms. Digital to Analog Converters and their properties, weighted resistor and R-2R Ladder type, Analog to digital Converters: Flash, Successive approximation, Sigma- Delta ADC.	15
3	Applications: Memory: Read Only Memory (ROM): PROM, EPROM, EEPROM, Applications, Programming a ROM, Random Access Memory(RAM): SRAM, DRAM, Applications, Memory Storage cell, Read and Write operations, ProgrammableLogic Devices (PLD) Digital Display, Seven segment display.	15
4	8085 Microprocessor: Basics of Microprocessor-8085, PIN description, Microprocessor initiated operations. Internal data operations. Introduction to 8085 assembly language programming. 8085 instruction, Microprocessor Applications, Recent trends in Microprocessor Technology.	15
To tru To To U To To To To	by Assignments: by construct logic gates OR, AND, NOT, NOR, NAND gates using discrete components and very that tables by construct logic gates AND, NOT, EX-NOR and EX-OR using NAND gates and verify their true to perform 4 bit DAC and ADC operations by arrange a data set in ascending order using 8080 microprocessor. se the IC555 chip as astable, bistable and monostable multivibrator. by study various operations of Arithmetic logic Unit (ALU). co perform the addition and subtraction of n 8 bit numbers using 8085 microprocessor co perform the multiplication and division of two 8 bit number using 8085 microprocessor co write a program to arrange an array of data in ascending order using 8085 microprocessor co design and construct multiplexer and demultiplexer and verify their truth tables.	-

To study the encoders and decoders To perform BCD to Binary operation using 8085 microprocessor.

TEXT BOOKS

- 1. **Malvino A.P.** and **Brown A.**, Digital Computer Electronics, Prentice-Hall, India, New Delhi, 3rd Edition, 1999.
- 2. **Gaonkar R. S.**, Microprocessor Architecture, Programming and Applications, Prentice-Hall, India,New Delhi, 2nd Edition, 2014.
- 3. **Tocci R. J.**, Digital Systems-Principles and Applications, Prentice Hall of India, New Delhi, 8th Edition, 2015.

Programming with Python

Scheme Version:	Name of the subject: Programming		L	Т	P	C	Semester:	Contact hours per week: 3+1
2022-24	with Python		3	0	2	4	III (2 nd Year)	Total Hours: 60=45+15
Subject Code: SBS PHY 01 309 DCEC	Applicable to Programs:		Evalu ation	CIE	30 Marks	Exam	ination Duratio	on: 3 hours
3024	M.Sc. Physics		(Total Marks : 100)	TEE	70 Marks		quisite of Cour edge of comput	
Course Description Course Objectives	· ·	To trai	putational in student ke studen	e on Comput techniques b in scientific ts comfortabl ical methods	by using Py language P le with cod	rthon. Tython e writing		the students
Course Outcomes	CO309D language CO309D along wit CO309D	• .1. Learn • • .2. Under •h graphic • .3. Design	the basics stand the al user int n algorithm selected p	basics of inpu- erface ms for variou problems usin	ming using ut and outp is numerica ng Python a	Python out forma l methoo	a about: as a scientific p tting and displa ls using Python as and programm	y techniques and
			(COURSE SY	LLABUS			
Unit No.				Content of E	Each Unit			Hours of Each Unit

	Basic of Python:	
1	Computational modeling, python programming for a Physicist, structure of a python program, running python program in console and in editor. constant and variables, numbers-integers, long integer, floating point number, complex number, sequences-string, list, tuples, dictionaries, operators – arithmetic operators, relational operators.	15
	Logical Statements:	
2	logical operators, assignment operators, conditional operator. Control statements if, if else, if-elif-else, while, for loop, nested if and nested for loops, break and continue.	15
	Functions in Python:	
3	user made, library, inbuilt. Functions definition and declaration, passing arguments, return values, default values and optional parameters. Importing modules, File handling operation with files, opening and closing a file. Formatting inputs and outputs, visualizing data, 2D, 3D, scatter graphs, animating graphs, statistical analysis of data- mean, median, mode, variance.	15
	Selected Problem using Python:	
4	Optimization: designing an algorithm for accuracy, designing an algorithm for speed, Errors in computation and Numerical stability, numerical integration, differentiation. Curve fitting, least squares method principle, Fourier Transform, symbolic computation, numerical computation.	15
	TEXT BOOKS	
2.	 Patil P. B. &Verma U. P., Numerical Computational Methods, Revised (Reprint 2013), Narosa Publication. Fangohr H., Introduction to Python for Computational Science and Eng (A beginner's guide), (2015), Faculty of Engineering and the Envi University of Southampton. Rajaraman V., Computer Oriented Numerical methods, 3rd Edition (2015), Hall India Ltd. 	gineering ronment,

Scheme Version:	Name of the subject: Major Research	L	Τ	Р	C	Semester:	Contact Hours per Week:
2022-24	Project	0	0		16	IV (2 nd Year)	Total Hours:
Subject Code:	Applicable to	Evalu		120	Exam	ination Durati	on:3 hours
SBS PHY 01 401 DCEC	Programs:	ation	CIE				
00016	M.Sc. Physics	(Total		280	Prere	quisite of Cour	se: None
		Marks : 400)	TEE	Marks			
Course	The dissertation topi	cs will be bas	ed on spec	ial papers	or elec	tive papers a	nd topics of
Description	current interest. A de and merit of the stud	-	mmittee wi	ll distribut	te the to	pics according	g to the skill
Course		tudents familiar				urvey	
Objectives	To make student capable of independent thinkingStudents will learn basic techniques for carrying out research						
	After completion of the	s project, studer	nts will be al	ole to learn	about:		
Course	CO401.1. Basic of lite	erature review					
Outcomes	CO401.2. Techniques		ning researcl	h			
	CO401.3. Analyze the	-	-		nanner		
	CO401.4. How to wri	te and dissertation	on, making p	presentation	n and viv	a etc.	

Major Research Project

Evaluation: The evaluation will be done by an external examiner. External examiner will award the grades based on quality of research work done recorded in dissertation and presentation made by student.

ADVANCED NULEAR PHYSICS

Scheme	Name of the	L	Т	Р	C	Semester:	Contact			
Version:	subject: Advanced						Hours per Week:			
2022-24	Nuclear					IV (2 nd	3+1			
2022-24	Physics					Year)	Total			
	rilysics	3	1	0	4	(leal)	Hours:			
		5	1	0	4		60=45+15			
Subject Code:	Applicable to	Evaluatio		30	Evami	nation Durati				
SBS PHY 01	Programs:	n	CIE	Marks	LAum		on. 5 nouis			
401 DCEC 3104	M.Sc. Physics	(Total	012	70	Prereo	uisite of Cour	se:			
	Jan	Marks:	TEE	Marks		matical Physics				
		100)		1.1.1.1.1.0	Physic	•	, u ii <i>u</i> 1 (u • 1 • u			
Course	To impart know	ledge about n	uclear de	formation			ar models for			
Description	understanding o									
•	heavy ion physic						1 I			
	Stuc	dents will un	derstand	about the	stahilit	ty of nuclei av	vay from the			
		line and def			, staoim	ly of fidelef at	way nom me			
Course	-					1 1 4	1			
Objectives				fierent th	eoretica	l approaches t	o explain the			
0 ~J • • • • •	stru	cture of nucl	ei							
	• Stud	dent will und	erstand	he basics	of heav	y ion nuclear	physics and			
	its c	correlation to	Astroph	vsics		-				
	After competitio		-	•	l be able	to				
Course	CO401D.1. Kno									
Outcomes	CO401D.2. Und	lerstand the n	uclear mo	dels to stu	idy the n	uclear structur	e properties			
	CO401D.3. Und	lerstand the va	rious asp	ects of hea	vy ion co	ollisions nuclea	r astrophysics			
	CO401D.4. Und				and relat	ed applications				
	I		E SYLL							
Unit No.		Conter	nt of Eac	ch Unit			Hours of			
	N						Each Unit			
	Nuclear deform		ions and	higher mu	ltinolo de	aformations				
	Effect of quadru									
1		Nuclear moments, Nuclear orientation effect, static and dynamic deformations, deformed magic shells and related nuclear aspects,								
		-				<u> </u>				
	Importance of Exotic nuclear systems, halo shapes and bubble effect, parametrization of nuclear surface.									
	Collective Mode									
	Collective motio			l. Rotation	n of defo	rmed nuclei,				
2							15			
2	Rotational band, Yrast level and back bending, Collective model Hamiltonian, nuclear wave function for even-even nuclei and odd-A									
	nuclei, Rotation									
	model, vibration									
	Heavy Ion Nu	clear Reactio	ns: Rea	action me	chanism,	, compound				
3			-			ns, fusion-fission				
J	dynamics, Radio					s, Nuclear	•			
	Dynamics at In	termediate ar	nd high (energies,	Quantun	n Dynamics				

	Models, Statistical Models, Multi-fragmentation, Elliptical Flow, Transverse Flow, Experimental Scenario, Relativistic heavy ion collisions.	
4	Nuclear Astrophysics:Hot big bang cosmology, Primordial nucleosynthesis, Stellarnucleosynthesis, energy production in stars, pp chain, CNO cycle,production of elements, Origin of chemical elements, Neutron Star,Chandershekhar limit, supernova,Nuclear Applications: Recent trends in nuclear structure physics andrelated important applications	15
	TEXT BOOKS	
1. 2.	Pal, M.K., Theory of Nuclear Structure, East-West Press Delhi, 1983. Preston M. A. and Bhaduri R. K., Structure of Nucleus Addison-Wesley, 2	

- 3. Roy R. R. and Nigam B. P. 9th Edition, Nuclear Physics, New Age International (p) Ltd, Delhi, 2001
- 4. Lilley J.S., Nuclear physics principles and applications John Wiley & sons Ltd., 2007.
- 5. Krane K.S. Nuclear Physics, Wiley India Pvt. Ltd., 2008.

PARTICLE PHYSICS

Scheme Version:	Name of the subject: Particle Physics	L	Τ	Р	С	Semester:	Contact hours per week: 3+1	
2022-24		3	1	0	4	IV (2 nd Year)	Total Hours: 60=45+15	
Subject Code: SBS PHY 01 402 DCEC 3104	Applicable to Programs: M.Sc. Physics	Evaluatio n (Total	CIE	30 Marks	Examin	nation Durat	ion: 3 hours	
	11.50.11.5505	(Total Marks: 100)	TEE	70 Marks	Mathen	quisite of Course: ematical Physics and um Mechanics, Nuclear cs		
Course Description	To impart the knowledge of fundamental particles, fundamental interaction and the range and strength of these interactions with the concept of particle antiparticle or matter antimatter.							
Course Objectives	inte • Stud phy • Stud • Stud	sics lents will get lents will une	ng them able to u to know derstand	nderstand the prod the quark	d the cor luction c	servation la	ws in particle	
Course Outcomes	After completion CO402D.1. Nee CO402D.2. Basi CO402D.3. Prop CO402D.4 We decay. CO402D.5 Lept produced during	d of standard ic rules of Fey perties of neut eak interaction ons and how β + and β - dec	model an nman dia rons and n between the(electro cays respe	d its limita grams and protons in n quarks a con) neutri ectively	ations and I the quar terms of nd how t	l the propertie k model for h a simple quar hat this is res	adrons k model ponsible for β	
		COURS	E SYLLA	ABUS				
Unit No.		Conte	nt of Eac	h Unit			Hours of	

		Each Unit
1	Introduction: Fermions and bosons, Particles and antiparticles, Quarks and leptons, Interactions and fields in particle physics, Classical and quantum pictures, Yukawa picture, Types of interactions - electromagnetic, weak, strong and gravitational, units.	15
2	Invariance Principles and Conservation Laws: Invariance in classical mechanics and in quantum mechanics, Parity, Pion parity, Charge conjugation, Positronium decay, Time reversal invariance, CPT theorem.	15
3	Hadron-Hadron Interactions: Cross section and decay rates, Pion spin, Isospin, Two-nucleon system, Pion-nucleon system, Strangeness and Isospin, G-parity, Total and Elastic cross section, Particle production at high energy.	15
4	 Static Quark model of Hadrons: The Eightfold way, Meson nonet, Baryon octet, Baryon Decuplet, hypothesis of quarks, SU (3) symmetry, Quark spin and color, Quark-antiquark combinations. Weak Interactions: Classification of weak interactions, Fermi theory, Weinberg-Salam model, Parity non-conservation in β-decay, Helicity of neutrino, Experimental verification of parity violation, K- decay. 	15
	TEXT BOOKS	
 Hughes Close, H Segre, H 	, D.H., Introduction to High Energy Physics, Cambridge University Press, 2 , I.S., Elementary Particles, Cambridge University Press, 1991. F.E., Introduction to Quarks and Partons, Academic Press, 1979. E., Nuclei and Particles, Benjamin-Cummings, 1977. A., M.P., Introduction to Particle Physics, Prentice-Hall of India, 2004.	000, 3 rd ed.

Cosmology

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester:	Contact Hours
version.	Cosmology						per
2022-24	Cosmology					IV(^{2nd}	Week: 4
						Year)	Total
		3	1	0	4		Hours:
							60=45+15
Subject	Applicable to	Evalu		30		ination Du	ation: 3
Code: SBS	Programs:	ation	CIE	Marks	hours		
PHY 01 403	M.Sc. Physics	(Total		70		equisite: In	
DCEC 3104		Mark	TEE	Marks		tronomy and	1
		s: 100)			Astro	physics	
Course	Cosmology is a	branch c	of astronomy	that invo	olves the	e origin and	evolution of
Description	the universe, from	n the Big	Bang to too	lay and on	into the	e future.	
Course	The aim of this c	ourse is t	o introduce	the model	of the u	iniverse on l	arge scales
Objectives							
	On completion of	f the cour	rea student	would be	ble to		
Course							
Outcomes	CO403D.1 : Understand the concepts of STR and GTR CO403D.2 : Apply the concepts of GTR to cosmology						
	CO403D.2 : Apply the concepts of GTK to cosmology CO403D.3 : Understand the model of expanding universe						
	CO403D.3 : Explain the model of early universe and its therm						tory.
		COU	RSE SYLL	ABUS			
Unit No.	Content of Each Unit					Ho	urs of Each
	Principles of Re	lativity.					Unit
	Overview of Sp	•	elativity - s	nacetime	interva	1 and	
1	-	15					
	Lorentz metric- four vectors - Introduction to general relativity (GR) - equivalence principle - notions of curvature						
	Gravitation as						
	spacetime :						
2	gravitational reds					U	15
	gravity, light ber	-	-	-		-	
	horizon and ergo		ydrostatic e	quilibriun	1 in GR	-	
	gravitational radi						
	Cosmological M Universe at larg		Homes	anaity on	d isotr		
3	distance ladder						15
	redshift - Cosmo						
<u> </u>							

	Robertson-Walker metric - Observable quantities – luminosity and angular diameter distances - Horizon distance- Dynamics of Friedman- Robertson-Walker models: Friedmann equations for sources with p=wu and w =-1, 0, 1/3, discussion of closed, open and flat Universes.	
4	Physical Cosmology and Early Universe: Thermal History of the Universe - distribution functions in the early Universe – relativistic and nonrelativistic limits - Decoupling of neutrinos and the relic neutrino background - Nucleosynthesis - Decoupling of matter and radiation – Cosmic microwave background radiation (CMB)- Anisotropies in CMB - Inflation – Origin and growth of Density Perturbations - Formation of galaxies and large scale structures - Accelerating universe and type-Ia supernovae - The Intergalactic medium and reionization.	15
	Text Books	

1. Cosmological Physics, Cambridge University Press, J. A. Peacock

2. An Introduction to Relativity, J. V. Narlikar, Cambridge University Press, 2010

3. Theoretical Astrophysics, Volume III: Galaxies and Cosmology,

T. Padmanabhan, Cambridge University Press, 2002 (for lectures on Cosmology)

4. Classical Theory of Fields, Vol. 2, L. D. Landau and E. M. Lifshitz, Oxford : Pergamon Press, 1994 (For more material on General Relativity).

5. Introduction to Cosmology, J. V. Narlikar, Cambridge University Press, 1993 (For the lectures on Cosmology).

6. First course in general relativity, B. F. Schutz, Cambridge university press, 1985 (For material on General Relativity).

7. Structure Formation in the Universe. T. Padmanabhan, Cambridge University Press, 1995 (for material on Cosmology and Structure formation).

FERROELECTRICITY AND MAGNETISM

Scheme Version:	Name of the subject: Ferroelectricity and	L	Т	Р	С	Semester:	Contact hours per week: 3+1		
2022-24	Magnetism	3	1	0	4	IV (2nd Year)Total Hours: 60=45+15			
Subject Code: SBS PHY 01 404 DCEC 3104	Applicable to Programs:	Evaluatio n	CIE	30 Marks	Examination Duration: 3 hours Prerequisite of Course: Graduation Level Solid-State Physics				
	M.Sc. Physics	(Total Marks: 100)	TEE	70 Marks					
Course Description	This course is designed to convey the understanding about dielectric, ferroelectric, and magnetic materials, which possess several breakthrough applications in actuators, sensors, energy storage devices, data storage devices etc.								
Course Objectives	 To understand the fundamentals of dielectric, ferroelectric and magnetism phenomenon in solids To make acquainted with several types of electric and magnetic materials and their exciting properties To aware the students about industrial applications of ferroelectric and magnetic materials To develop the positive and scientific attitudes and analytical thinking in the students related to materials science 								
Course Outcomes	After competitions of this course, the students will be able to CO404D.1. explain the dielectric phenomenon in crystals with their exciting properties CO404D.2. interpret the theory of polarization and components of polarizability of polar Dielectrics								

	CO404D.3. learn the basics of ferroelectric and piezoelectric crystals						
	CO404D.4. understand the applications of ferroelectric and piezoelectric materials in various electronic devices						
	CO404D.5. describe the diamagnetism and paramagnetism phenomenon in solids, specifically the magnetic susceptibility behavior with temperature						
	CO404D.6. evaluate the paramagnetic susceptibility of iron group i ions, and conduction electrons	ons, rare earth					
	CO404D.7. compare the general mechanism of ferro, ferri, and anti- materials	ferro magnetic					
	CO404D.8. recognize some new ferromagnetic materials which pos applications in data storage devices	sess intriguing					
	COURSE SYLLABUS						
Unit No.	Content of Each Unit	Hours of Each Unit					
	Theory of Dielectrics:						
1	Introduction, The Microscopic Concept of Polarization, Langevin's Theory of Polarization in Polar Dielectrics, Internal-Field or Local Field, Clausius-Mossotti Relation, Components of Polarizability: Electronic Polarizability; Ionic Polarizability; Orientational Polarizability; Total Polarizability, Measurement of Dielectric Constant, Dielectric Losses, Optical Phenomena.	15					
	Ferroelectric Crystals:						
2	Representative Crystal Types of Ferroelectrics: Properties of Rochelle Salt and Barium Titanate, Ferroelectric Displacive Transitions, Landau Theory of Phase Transition: Second-Order Transitions; First-Order Transitions, Antiferroelectricity, Ferroelectric Domains, Piezoelectricity, Electrostriction, Applications of Ferroelectric Crystals.	15					
3	Diamagnetism and Paramagnetism :	15					
	Langevin's Theory of Diamagnetism, Quantum Theory of						

4 Ferromagnetism and Antiferromagnetism : 4 Ferromagnetic Order: Weiss Theory of Ferromagnetism; The Exchange Interaction; The Heisenberg Model, Ferrimagnetic Order: Curie Temperature and Susceptibility of Ferrimagnets, Antiferromagnetic Order, Ferroelectric Domains: Anisotropy Energy; The Bloch Wall; Origin of Domains; Coercivity and Hysteresis, Spin Waves: Magnons in Ferromagnets; The Bloch T ^{3/2} Law, Determination of Magnetically Ordered Structures, Some New Magnetic Materials: GMR-CMR Effects. 15 1. S. Blundell, Magnetism in Condensed Matter, Oxford, UK, 1 st Edition, 2001. 201. 2. M.E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, UK, 2001. 3. 3. M. A. Omar, Elementary Solid State Physics, Pearson, India, 1 st Edition, 2002.	Diamagnetism: Mononuclear Systems, Langevin's Theory of Paramagnetism, Quantum Theory of Paramagnetism: Rare Earth Ions; Hund Rule; Iron Group Ions; Crystal Field Splitting, Van Vleck Paramagnetism, Nuclear Paramagnetism, Cooling by Adiabatic Demagnetization, Paramagnetic Susceptibility of Conduction Electrons.					
 S. Blundell, Magnetism in Condensed Matter, Oxford, UK, 1st Edition, 2001. M.E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, UK, 2001. 	4	Ferromagnetic Order: Weiss Theory of Ferromagnetism; The Exchange Interaction; The Heisenberg Model, Ferrimagnetic Order: Curie Temperature and Susceptibility of Ferrimagnets, Antiferromagnetic Order, Ferroelectric Domains: Anisotropy Energy; The Bloch Wall; Origin of Domains; Coercivity and Hysteresis, Spin Waves: Magnons in Ferromagnets; The Bloch T ^{3/2} Law, Determination of Magnetically Ordered Structures, Some New Magnetic Materials:	15			
 M.E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, UK, 2001. 						
University Press, UK, 2001.	1. S. Blundell , Magnetism in Condensed Matter, Oxford, UK, 1 st Edition, 2001.					
3. M. A. Omar. Elementary Solid State Physics. Pearson India 1 st Edition 2002						
c. Lette chine, Denoming Sond Suite Englishes, Fourboil, India, F. Barton, 2002.						
4. B. D. Culity and C. D. Grahim , Introduction to Magnetic Materials, Wiley, USA, 2 nd Edition, 2008.						
5. K. Uchino , Ferroelectric Devices, CRC Press publication, Taylor and Francis Group, 2 nd Edition, 2010.	4. B. D. Culi					
6. C. Kittel , Introduction to Solid State Physics, John Wiley and Sons, USA, 8 th Edition, 2012.		, Ferroelectric Devices, CRC Press publication, Taylor and Francis Group, 2 nd Ec	dition, 2010.			
7. M. P. Marder , Condensed Matter Physics, Wiley, USA, 2 nd Edition, 2015.	5. K. Uchino					

Advanced Carbon Materials

Scheme	Name of the	L	Т	Р	С	Semester:	Contact
Version:	subject:						hours per week: 3+1
	Advanced						week: 5+1
2022-24	Carbon Materials						Total
2022 24		3	1	0	4	I (1 st Year)	Hours: 60=45+15
							00=45+15
				20	-		
Subject Co		Evalu		30 Maria	Exami	nation Duratio	on: 3 hours
SBS PHY 0 405 DCEC	01 Programs: M.Sc. Physics	ation	CIE	Marks			
403 DELC 3104	WI.SC. I Hysics	(Total					
0101		Marks		70 Maria	Prereq	uisite of Cour	se: None
		: 100)	TEE	Marks			
Course							
Descriptio							e
		revolution and advancement in the era of material science and technology. In general, 20th century corresponds to plastic meanwhile 21st century will be named as "Century of					
	Graphene" owing	•	•		•	in be named as	s century of
				• •			
Course	On completion of	the course	e, student wou	ild be able:			
Objectiv	• To unders	tand vario	ous properties	of Grapher	ne, CNTs	and Fullerenes	5
Course	On completion of	the course	e, student wou	Id be able:			
Outcome	es CO405D.1. To un	derstand f	he basic prop	erties of ca	rbon		
	CO405D.2. To une	derstand th	ne various pro	perties and	applicat	ions of grapher	ne
	CO405D.3.To understand the various properties and applications of CNT						
CO405D.4.To understand the various properties and applications of fullerenes						ies	
COURSE SYLLABUS							
Unit No.		Content o	f Each Unit			Hours of	Each Unit
1	INTRODUCTION:					1	15
	Carbon atomic structure and hybridization, carbon on the Earth and						

 M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Elsevier, 1996. Yury Gogotsi, Carbon Nanomaterials, Taylor and Francis, 2006. Francois Leonard, The Physics of Carbon Nanotube Devices, Elsevier, 2008. Anke Krueger, Carbon Materials and Nanotechnology, Wiley-VCH, 2010. 						
TEXT BOOKS						
4	FULLERENES : Structure and Bonding- Nomenclature, The Structure of C60, Structure of Higher Fullerenes - Growth Mechanisms; Production and Purification- Fullerene Preparation by Pyrolysis of Hydrocarbons, Partial Combustion of Hydrocarbons, Arc Discharge Methods, Production by Resistive Heating, Rational Syntheses; Physical Properties-, Spectroscopic Properties, Thermodynamic Properties; Chemical Properties- Hydrogenation and Halogenation, Nucleophilic Addition to Fullerenes. Application of Fullerenes	15				
3	CARBON NANOTUBES: The Structure of Carbon Nanotubes- Nomenclature, Structure of Single-Walled Carbon Nanotubes and Structure of Multiwalled Carbon Nanotubes; Synthesis of CNT by various physical and chemical methods and Purification, Characterization of Carbon Nanotubes: Raman and Infrared Spectroscopy of CarbonNanotubes, Absorption and Emission Spectroscopy of Carbon Nanotubes, ESR- Spectroscopic Properties of Carbon Nanotubes. Application of CNTs	15				
2	GRAPHENE :Structure of graphene; Preparation of graphene – synthesis of graphene by various physical and chemical methods and Purification; Electronic Properties – Band Structure of Graphene - Mobility and Density of Carriers - Quantum Hall Effect – Characterization of graphene: Raman Spectroscopy, Infrared Spectroscopy, Absorption and Photoluminescence Spectroscopy, Atomic Force Microscopy, Application of graphene	15				
	in outer space, carbon in technology and economy, carbon isotopes: classification of carbon allotropes, conversion of one allotropic form into another, phase diagram of carbon, new carbon structures: discovery of C_{60} , Graphene and Nanotubes					

Cengage Learning, 2010.

- 6. Jamie H. Warner, Franziska Schäffel, Mark H. Rümmeli, Graphene: Fundamentals and emergent applications, Elsevier, 2013.
- 7. **T. Pradeep**, NANO: The Essentials- Understanding Nanoscience and Nanotechnology, McGraw Hill Education, 2017.
- 8. Deborah D L Chung, Carbon Materials: Science and Applications, World Scientific, 2019.

Experimental Techniques in Nuclear and Particle Physics

Scheme Version:	Name of the subject:	L	Т	Р	C	Semester:	Contact hours per week: 3+1
2022-24	Experimental Techniques in Nuclear and Particle Physics	3	1	0	4	IV (2 nd Year)	Total Hours: 60=45+15
Subject Code:	Applicable to	Evalu		30	Exam	ination Durati	on·3 hours
SBS PHY 01 406 DCEC	Programs: M.Sc. Physics	ation	CIE	Marks	Lixum		
3104		(Total Marks : 100)	TEE	70 Marks	Prerequisite of Course: Basics of Nuclear and Particle Physics		
Course Description	This course is intended to familiarize the M.Sc. students to the experimental techniques used in the fields of nuclear physics and particle physics. Various detection techniques will be introduced followed by a description of on-detector and off-detector electronics.						
Course Objectives	 Get knowledge about various experimental techniques used in the fields of nuclear physics and particle physics. To get familiar with various detector systems and related electronics. 						
	 After completion of this course, students would be able to: CO406D.1. Get knowledge about different types of radiations & their interaction with matter. CO406D.2. Understand the radiation exposure and its effects on biological system. CO406D.3. Learn about how to detect radiations. CO406D.4. Get knowledge about the various electronic components of radiation detectors and pulse signal processing. CO406D.5. Understand Learn about different existing detector facilities all around the world. 						
Course Outcomes							

Unit No.	Content of Each Unit	Hours of Each Unit
1	15	
2	Detection of radiations:General properties of Radiation detectors, energy resolution, detection efficiency and dead time. Gas-filled detectors: Ionization chamber, Proportional counters, position-sensitive proportional counters, Multiwire proportional chambers, Drift chamber, Time 	15
3	Detector electronics: Electronics for pulse signal processing, CR-(RC) ⁿ and delay-line pulse shaping, pole-zero cancellation, baseline shift andrestoration, preamplifiers, overload recovery and pileup, Linear amplifiers, single-channel analyser, analog-to-digital converters,multichannel analyzer. Basic considerations in time measurements; Walk and jitter, Time pickoff methods, time-to- amplitude converters, Systems for fast timing, fast-slow coincidence, and particle identification, NIM and CAMAC instrumentation standards and data acquisition system.	15
4	Experimental Facilities:Detector systems for heavy-ion reactions: Large neutron detector array, gamma and charge particle detector arrays, electron spectrometer, heavy-ion reaction analysers, nuclear lifetime measurements (DSAM and RDM techniques), production of 	15

	TEXT BOOKS
1.	W.R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer, Berlin Heidelberg, 2 nd Edition, 1994.
2.	Konrad Kleinknecht , Detectors for particle radiation, Cambridge University Press, 1999.
3.	Richard Fernow , Introduction to Experimental Particle Physics, Cambridge University Press, 2001.
4.	<u>Glenn F. Knoll</u> , Radiation Detection and Measurement, John Wiley & Sons, 4 th Edition, 2010.

Astronomy Laboratory

Scheme Version: 2022-24	Name of the subject: Astronomy Laboratory	L	T	Р	C	IV(^{2nd} Hour Ber Weel			
		0	0	8	4	Year)	Total Hours: 60=45+15		
Subject Code: SBS	Applicable to Programs:	Evalu ation	CIE	30 Marks	Exan Hours	nination Dura	ation: 3		
PHY 01 407 DCEC 0084	M.Sc. Physics	(Total Mark s: 100)	TEE	70 Marks	to As	requisite: Intr tronomy and physics	roduction		
Course Description	This course shall <i>astronomy</i> first-h	-	ding the too	ols and kno	ow-how	to apply the	principles of		
Course Objectives	The aim of this course to make students aware about different softwares (e.g stellarium etc.) available to simulate night sky and observe astronomica phenomenon.								
Course Outcomes	On completion of the course, student would be able to CO407D.1 : become familiar with astronomical coordinate system CO407D.2 : Study the spectrum of celestial objects CO407D.3 : observe the distance of planets								
	CO407D.4 : obs	1	1						
Unit No.	COURSE SYLLABUS Content of Each Unit					Hou	rs of Each Unit		
1	Getting to know : Experiment 1 : To become familiar with night sky Experiment 2: Becoming Familiar with Constellations Experiment 3: Retrograde motion of Planets					15			
2	Spectral Analysis Experiment 4: St		lar spectrur	n			15		

	Experiment 5: Spectral classification of stars						
Experiment 6: Extracting position of a star							
3	Stellar Motions : Experiment 7: Cepheid Variables Experiment 8: To measure the Proper Motion of Barnard's Star	15					
	Experiment 9: Circumpolar Star						
	Stellar Distances :						
	Experiment 10: Colour Magnitude Diagram						
4	4 Experiment 11:Orbital Inclination 15						
	Experiment 12: Planetary Distances						
References							
1. http://www3.gettysburg.edu/~marschal/clea/Vireo.html							
	astro.unl.edu/vlabs/						
	<u>va-iitk.vlabs.ac.in/</u> www.astro.indiana.edu/catyp/minilabs.html						
-	<u>www.astro.indiana.edu/catyp/miniads.ntmi</u> depts.washington.edu/naivpl/content/welcome-virtual-planetary	-laboratory					
5. <u>https://depts.washington.edu/harvpi/content/weiconte-virtual-planetaly-laboratory</u>							

VACUUM SCIENCE AND THIN FILM TECHNOLOGY

Scheme	Name of the	L	Т	Р	С	Semester:	Contact	
Version:	Subject:						hours	
2022-24	Vacuum Science and Thin Film						per week: 3+1	
2022-24	Technology	3	1	0	4	IV (2 nd Year)	Total Hours: 60=45+15	
Subject Code: SBS PHY 01	Applicable to Programs:	Evaluation (Total	CIE	30 Marks	Exa hour	mination Dura	ation: 3	
408 DCEC 3104	M.Sc. Physics	(10ta) Marks): 100	TEE	70 Marks	Pre-	Pre-requisite of course:		
Course Description	The central objective technology behind thi designs and case studi	n film growth.	Possible	e applicatio	ons de	monstrating no	vel material	
Course Objectives	 Understand vacuum fundamentals essential to operating, maintaining, designing, or using vacuum systems. Know the working principles and limitations of pumps, gauges, and other vacuum system components. Learn the design concepts involved in matching equipment and instrumentation to applications. 							
Course Outcomes:	 On completion of this course, student will learn: CO408.1 Understand the Kinetic Theory of Gases, mean free path and the physical concepts behind the thin film depositions. CO408.2 Understand the kinetic theory of nucleation, growth and diffusion phenomenon CO408.3 Understand the basics of vacuum science and technology, Vacuum pumps and gauges and use of various vacuum based techniques for development of thin film-based materials, structures, and plasma devices and systems. CO408.4 Familiarize with the physical concepts of lithography behind the solid-state electronics devices design patterns. CO408.5 Understand certain experimental techniques for characterization of thin films for 							
	CO408.5 Understand certain experimental techniques for characterization of thin films for their structural, morphological, surface topology, electrical, mechanical and optical							

properties.							
CO408.6 Design protocols for thin film deposition, characterization and various applications.							
COURSE SYLLABUS							
Content of Each Unit	Hours of Each Unit						
The physics of gases and vacuum systems:	15						
Gas kinetics, Maxwell-Boltzmann distribution, molecular impingement flux, Knudsen equation, mean free path, transport properties, Evaporation: thermodynamics of evaporation, evaporation rate, alloys, compounds, sources, deposition monitoring techniques, Deposition: adsorption, surface diffusion, nucleation, structure development, interfaces, stress, adhesion.							
Vacuum Science and deposition techniques:Basics of vacuum science, creation of vacuum usingdifferentpumps, vacuum gauges, vacuum leak detection, helium leakdetector, residual gas analyzer. Thermal evaporation andelectron beam evaporation system, idea of DC and R.F.sputtering system, Methods of producing thin films usingPhysical vapour deposition, Chemicals Vapour Depositionand spray pyrolysis methods, Molecular Beam Epitaxy andLaser Ablation methods for thin film deposition.	15						
Lithography: Importance of lithography, Basic steps of lithography, Substrate preparation methods, Positive photoresist, Negative photoresist, photoresist Processing, photoresist coating methods, Resist Exposure (single, bi-layer and multi-level photoresist exposure) and Resist Development, soft backing and hard baking, Etching, Types of lithography, Photolithography, Idea of electron beam lithography, Idea of an X-ray lithography, Interference Lithography, Step Growth,	15						
	CO408.6 Design protocols for thin film deposition, character applications. COURSE SYLLABUS COURSE SYLLABUS Content of Each Unit The physics of gases and vacuum systems: Gas kinetics, Maxwell-Boltzmann distribution, molecular impingement flux, Knudsen equation, mean free path, transport properties, Evaporation: thermodynamics of evaporation, evaporation rate, alloys, compounds, sources, deposition monitoring techniques, Deposition: adsorption, surface diffusion, nucleation, structure development, interfaces, stress, adhesion. Vacuum Science and deposition techniques: Basics of vacuum science, creation of vacuum usingdifferent pumps, vacuum gauges, vacuum leak detection, helium leak detector, residual gas analyzer. Thermal evaporation and electron beam evaporation system, idea of DC and R.F. sputtering system, Methods of producing thin films using Physical vapour deposition, Chemicals Vapour Deposition and spray pyrolysis methods, Molecular Beam Epitaxy and Laser Ablation methods for thin film deposition. Lithography: Importance of lithography, Basic steps of lithography, Substrate preparation methods, Positive photoresist, Negative photoresist, photoresist Processing, photoresist, coating methods, Resist Exposure (single, bi-layer and multi-level photoresist exposure) and Resist Development, soft backing and hard baking, Etching, Types of lithography,						

4.	Thin Film Analysis and Applications:	15					
	REFERENCE BOOKS						
1. Chop	1. Chopra, K.L., Thin Film Phenomena, Robert E. Krieger publishing, 1969.						
2. Smith	2. Smith, D.L., Thin-Film Deposition: Principles and Practice, McGraw-Hill, 1995.						
3. Humi	3. Hummel, R. E. and Guenther, K.H., Handbook of Optical Properties: Thin Films for Optical Coatings,						
Volu	Volume 1, CRC Press, 1995.						
4. Ohrin	4. Ohring, M., The Materials Science of Thin Films, 2nd Edition, Academic press, 2002.						
5. Soria	5. Soriaga, M.P., Stickney, J., Bottomley, L.A., and Kim Y.G, Thin Films: Preparation, Characterization,						
Appli	Applications, Springer Science 2011.						

Minor Research Project

Scheme Version:	Name of the subject: Minor Project		L	Τ	Р	C	Semester:	Contact hours per week: 3+1
2022-24			0	0		4	IV (2 nd Year)	Total Hours: 60=45+15
Subject Code: SBS PHY 01 409 DCEC	Applicable to Programs:		valu tion	CIE	00	Examination Duration:3 hours Prerequisite of Course: None		on:3 hours
00016	M.Sc. Physics	Μ	Fotal Iarks 100)	TEE	100 Marks			rse: None
Course Description		The minor project topic will be decided on the basis of student skill and interest. On mentor will be allocated to student for discussion and direction.					nd interest.	
Course Objectives		• Student will have idea about the literature survey and how to write an overview.						
Course Outcomes	After completion of this project, students will be able to learn about: CO409.1. Basic of literature review CO409.2. Learn how to do research CO409.3. How to write a report. CO409.4. Present the work done in minor project.							

Evaluation: The evaluation will be done by a Departmental committee constituted by Head of the Department. Committee will award the grades based on quality of project work done and presentation made by student.

Scheme Version:	Name of the Subject: Introduction to	L	Т	Р	C	Semester:	Contact hours per		
2022-24	Hydrogen Energy Systems	3	1	0	4	IV (2 nd Year)	week: 4 Total Hours: 60=45+15		
Subject Code: SBS PHY 01 410	Applicable to Programs:	Evaluation	CIE	30 Marks	Exan	nination Durati	on: 3 hours		
DCEC 3104	M.Sc. Physics	(Total Marks): 100	TEE	70 Marks	Pre-1	requisite of course: None			
Course	To introduce the conce				gen as	future fuel. To	enlighten the		
Description	knowledge of production	-	-			1.1.			
Course Objectives	This course aim is to g future source of energy.	give insight of h	ydrogen	production,	storage	e and their appl	lication, as a		
Course Outcomes:	On completion of this co	ourse, student wil	l learn:						
	CO410.1 The Course will create awareness among students about Non-Conventional sources of								
	energy technologies and provide adequate inputs on a variety of issues.								
	CO410.2 There is very good scope for saving energy, by using it judiciously. During these days								
	of saving the environment, energy conservation plays a vital role. The government of India has								
	passed Energy Conservation Act-2003 and Energy Conservation Building Code (ECBC-2007), in								
	this regard. By observing energy efficient measures there is tremendous scope of saving energy in								
	industry, built environment, transport etc.								
	CO410.3 To teach fundamentals of hydrogen energy as energy systems, production processes, separation and utilization that is necessary for taking some important elective subjects as well as to								
	-					•			
	increase the potential fo								
	infrastructure development related sectors as about 40% energy is being consumed by automotive								
	sectors. CO410.4 This course has objectives to elaborate PG students regarding current trends in hydrogen								
	energy architecture and following key concepts such as hydrogen storage and hydrogen sensing.								
	CO410.5 . To Provide adequate inputs on a variety of issues relating to safety guidelines, codes								
	and standards in hydrogen energy systems.								
	, , , , , , , , , , , , , , , , , , ,			YLLABUS					
Unit No.		ontent of Each U				Hours of F	Each Unit		
5.	Hydrogen energy pathways: [Course Outcome (s): CO410.1 & 15								
	CO410.2] Hydrogen Energy Pathways- Properties of hydrogen, Global and								
	Indian hydrogen energy scenario, need for hydrogen, current uses,								
	environmentally sustainable hydrogen, hydrogen as part of Climate								
	Neutral Strategy. Hydrogen for mobility applications & vehicles,								
	Overview of Hydrogen utilization: I.C. Engines, gas turbines,								
	hydrogen burners, power plant, refineries, domestic and marine								
	applications.	1 /	,		-				

INTRODUCTION TO HYDROGEN ENERGY SYSTEMS

6.	Hydrogen production and separation: [Course Outcome (s): CO410.3]	15			
	Hydrogen Production-Production of hydrogen from				
	hydrocarbons-oxidative and nonoxidative processes, coal.				
	Hydrogen production using nuclear energy and renewables- wind,				
	biomass, solar.				
	Hydrogen separation and purification-Pressure swing				
	adsorption, Solvent based absorption, membrane separation,				
	cryogenic separation etc.				
7.	Hydrogen storage: [Course Outcome (s): CO410.4] Hydrogen Storage -Types of hydrogen storage (Gaseous, Liquid,	15			
	Solid hosts), Gibbs Phase Rule, Pressure-Composition-				
	Temperature plots; Van't Hoff plots for absorption desorption				
	enthalpies, Gravimetric capacities, Hysteresis in cycling, Joule-				
	Thomson Effect, Non-ideal treatment of hydrogen gas Kinetics:				
	Hydrogen absorption/desorption phenomena (chemisorption,				
	nucleation and growth and diffusion), Kinetic models, Kissinger				
	analysis for activation energy estimation, Hydrogen adsorption				
	isotherms-BET, design and applications of storage systems,				
	materials for hydrogen storage, Hydrogen storage for automobiles.				
8.	Hydrogen sensing and safety: [Course Outcome (s): CO410.4&	15			
	CO410.5] Hydrogen sensing-Traditional methods of hydrogen sensing using				
	thermal conductivity measurements or Gas Chromatography, Mass				
	Spectroscopy or laser gas analysis; Solid state sensors- their				
	working principle and applications at industrial scale.				
	Hydrogen Safety-Physiological, physical and chemical hazards,				
	hydrogen properties associated with hazards, Hazard spotting,				
	evaluation and safety guidelines, Hydrogen safety codes and				
	standards. Hydrogen safety barrier diagram, risk analysis, safety in				
	handling and refueling station, safety in vehicular and stationary				
	applications, fire detecting system, safety management.				
	REFERENCE BOOKS				
 F. Peter, 1 JOM Boo publisher 	Fuels and Fuel Technology, A.Wheatan & Co. Ltd., 1st edition, 1965. ekris, Energy options: Real Economics and the Solar Hydrogen System, 1980.	, Halsted Press and London			
	, Fuels and Combustion, Orient Longman, 2nd edition, 1990.				
	and T Weir, Renewable Energy Resources, Taylor and Francis (Ed), Net				
-	ght, The chemisty & Technology of Petroleum, 4th edition, CRC Press, 2				
12. M. Ball a Press, 200	and M. Wietschel, The Hydrogen Economy Opportunities and Challer	nges, Camoridge University			
,	ght and B. Ozum, Petroleum Refining Process, CRC Press, 2009.				
14. W. Lyons, Working Guide to Petroleum and Natural Gas Production Engineering, Elsevier Inc, 2009.					
	C. Song and V. Subramani, Hydrogen and Syngas Production and Puri				
	Sons, 2010.				
16. M.K.G. F Press, 20	Babu, K.A. Subramanian, Alternative Transportation Fuels: Utilization in 13.	Combustion Engines, CRC			
	ght, The Chemistry and Technology of Coal, CRC Press, 2013.				

9. TEACHING-LEARNING PROCESS

- Lectures
- Discussions
- Simulations
- Role Playing
- Participative Learning
- Interactive Sessions
- Seminars
- Research-based Learning/Dissertation or Project Work
- Technology-embedded Learning

10. IMPLEMENTATION OF BLENDED LEARNING

Blended Learning is a pedagogical approach that combines face to-face classroom methods with computer-mediated activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICT-enabled strategies. It emphasises student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimises and compliments the face to face learning, giving ample freedom and flexibility to the students and teachers to access and explore the wide range of open-access sources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slots to complement and supplement face to face learning. The Blended Learning doesn't undermine the role of the teacher, rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.

Key features of Blended Learning

- **Student-Centric Pedagogical Approach** focusing on flexibility in timing, quality content, needs and interests of students and freedom to study through the mode of his/her choice;
- Freedom to Select variety of mediums and techniques;
- Increased student engagement in learning;
- Enhanced teacher and student interaction;
- Improved student learning outcomes;
- More flexible teaching and learning environment;
- More responsive for self and continuous learning;
- Better opportunities for experiential learning;

- Increased learning skills;
- Greater access to information, improved satisfaction and learning outcomes.

Note: Resolution no (c) as per minutes circulated by VC office: It was resolved that Blended Learning with 40% component of online teaching and 60% face to face classes for each

programme, be adopted.

11. ASSESSMENT AND EVALUATION

- Continuous Comprehensive Evaluation at regular after achievement of each Course-level learning outcome
- Formative Assessment on the basis of activities of a learner throughout the programme instead of one-time assessment
- Oral Examinations to test presentation and communication skills
- Open Book Examination for better understanding and application of the knowledge acquired
- Group Examinations on Problem solving exercises
- Seminar Presentations
- Review of Literature
- Collaborative Assignments

12. KEYWORDS

- LOCF
- NEP-2020
- Blended Learning
- Face to face (F to F) Learning
- Programme Outcomes
- Programme Specific Outcomes
- Course-level Learning Outcomes
- Postgraduate Attributes
- Learning Outcome Index
- Formative Assessment and Evaluation
- Comprehensive and Continuous Evaluation

13. REFERENCES

- National Education Policy-2020. https://www.education.gov.in/sites/upload_files/mhrd/files/NEP_Final_English_0.pdf
- The draft subject specific LOCF templates available on UGC website. <u>https://www.ugc.ac.in/ugc_notices.aspx?id=MjY5OQ</u>==
- Draft Blended Mode of Teaching and Learning: Concept Note available on UGC website. <u>https://www.ugc.ac.in/pdfnews/6100340_Concept-Note-Blended-Mode-of-Teaching-and-Learning.pdf</u>